skip to main content

Reaction Kinetics of Waste Cooking Oil Hydrocracking into Biofuel Using Ni-Impregnated Mesoporous Silica Catalyst

1Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Ahmad Dahlan, Jl. Kapas 9, Semaki, Umbulharjo, Yogyakarta 55166, Indonesia

2Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia

3Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika No. 2, Yogyakarta 55281, Indonesia

Received: 18 May 2025; Revised: 21 Aug 2025; Accepted: 25 Aug 2025; Available online: 28 Aug 2025; Published: 31 Oct 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

The growing demand for energy and the scarcity of fossil fuel resources have driven research into alternative fuels, one of which being the conversion of waste cooking oil into biofuel through hydrocracking. This study investigates the reaction kinetics of waste cooking oil hydrocracking using a Ni-impregnated mesoporous silica catalyst. The process was conducted at 450 °C with a hydrogen gas flow to produce products such as green naphtha, green gasoline, and green diesel. The proposed reaction kinetics model was the pseudo-first order, solved using differential and integral methods. The results showed that the first-order reaction provided a more representative outcome, with a reaction rate constant (k’) of 0.276 h⁻¹ at 450 °C. Additionally, the Arrhenius kinetic model revealed an activation energy of 37.8748 kJ/mol for this process. Thus, this study demonstrates a significant potential of using mesoporous silica catalysts in waste cooking oil hydrocracking to produce environmentally friendly and economically viable biofuels. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: biofuel; hydrocracking; mesoporous silica; kinetics
Funding: The Doctoral Dissertation Research (PDD) under contract 208/UN.1/DITLIT/DITLIT/PT/2021

Article Metrics:

  1. Tirado, A., Ancheyta, J., Trejo, F. (2018). Kinetic and reactor modeling of catalytic hydrotreatment of vegetable oils. Energy & Fuels, 32 (7), 7245–7261. DOI: 10.1021/acs.energyfuels.8b00947
  2. Azahar, W.N.A.W., Bujang, M., Jaya, R.P., Hainin, M.R., Mohamed, A., Ngadi, N., Jayanti, D.S. (2016). The potential of waste cooking oil as bio-asphalt for alternative binder – An overview. Jurnal Teknologi, 78(4), 111–116. DOI: 10.11113/jt.v78.8007
  3. Charusiri, W., Vitidsant, T. (2005). Kinetic study of used vegetable oil to liquid fuels over sulfated zirconia. Energy & Fuels, 19(5), 1783–1789. DOI: 10.1021/ef0500181
  4. Žula, M., Grilc, M., Likozar, B. (2022). Hydrocracking, hydrogenation and hydro-deoxygenation of fatty acids, esters and glycerides: Mechanisms, kinetics and transport phenomena. Chemical Engineering Journal, 444, 136564. DOI: 10.1016/j.cej.2022.136564
  5. Wijaya, K., Utami, M., Damayanti, A.K., Tahir, I., Tikoalu, A.D., Rajagopal, R., Thirupathi, A., Ali, D., Alarifi, S., Chang, S.W., Ravindran, B. (2022). Nickel-modified sulfated zirconia catalyst: Synthesis and application for transforming waste cooking oil into biogasoline via a hydrocracking process. Fuel, 322. DOI: 10.1016/j.fuel.2022.124152
  6. Demirbas, A. (2009). Political, economic and environmental impacts of biofuels: A review. Applied Energy, 86 (Suppl. 1), S108–S117. DOI: 10.1016/j.apenergy.2009.04.036
  7. Mohanty, A., Ajmera, S., Chinnam, S., Kumar, V., Mishra, R.K., Acharya, B. (2024). Pyrolysis of waste oils for biofuel production: An economic and life cycle assessment. Fuel Communications, 18, 100108. DOI: 10.1016/j.jfueco.2024.100108
  8. Tamošiūnas, A., Gimžauskaitė, D., Aikas, M., Uscila, R., Praspaliauskas, M., Eimontas, J. (2019). Gasification of waste cooking oil to syngas by thermal arc plasma. Energies, 12(13), 2612. DOI: 10.3390/en12132612
  9. Shalaby, N., Hanafi, S.A., Elmelawy, M.S., El-Syed, H.A. (2015). Hydrocracking of waste cooking oil as renewable fuel on NiW/SiO₂-Al₂O₃ catalyst. Journal of Advanced Catalysis Science and Technology, 2(1), 27–37. DOI: 10.15379/2408-9834.2015.02.01.3
  10. Mirzayanti, Y.W., Prajitno, D.H., Roesyadi, A., Febriyanti, E. (2020). Kinetic study of catalytic hydrocracking ceiba pentandra oil to liquid fuels over nickel-molybdenum/HZSM-5. Materials Science Forum, 988, 128–136. DOI: 10.4028/www.scientific.net/MSF.988.128
  11. Mederos-Nieto, F.S., Elizalde-Martínez, I., Trejo-Zárraga, F., Hernández-Altamirano, R., Alonso-Martínez, F. (2020). Dynamic modeling and simulation of three-phase reactors for hydrocracking of vegetable oils. Reaction Kinetics, Mechanisms and Catalysis, 131(2), 613–644. DOI: 10.1007/s11144-020-01896-4
  12. Valavarasu, G., Bhaskar, M., Balaraman, K.S. (2003). Mild hydrocracking – A review of the process, catalysts, reactions, kinetics, and advantages. Petroleum Science and Technology, 21(7–8), 1185–1205. DOI: 10.1081/LFT-120017883
  13. Sharma, Y.C., Singh, B., Korstad, J. (2011). Advancements in solid acid catalysts for ecofriendly and economically viable synthesis of biodiesel. Biofuels, Bioproducts and Biorefining, 5(1), 69–92. DOI: 10.1002/bbb.253
  14. Wijaya, K., Saputri, W.D., Aziz, I.T.A., Wangsa, Heraldy, E., Hakim, L., Suseno, A., Utami, M. (2022). Mesoporous Silica Preparation Using Sodium Bicarbonate as Template and Application of the Silica for Hydrocracking of Used Cooking Oil into Biofuel. Silicon, 14(4), 1583–1591. DOI: 10.1007/s12633-021-00946-3
  15. Zhao, J., Wang, G., Qin, L., Li, H., Chen, Y., Liu, B. (2016). Synthesis and catalytic cracking performance of mesoporous zeolite Y. Catalysis Communications, 73, 98–102. DOI: 10.1016/j.catcom.2015.10.020
  16. Salamah, S., Trisunaryanti, W., Kartini, I., & Purwono, S. (2022). Synthesis of mesoporous silica from beach sand by sol–gel method as a Ni supported catalyst for hydrocracking of waste cooking oil. Indonesian Journal of Chemistry, 22(3), 726–741. DOI: 10.22146/ijc.70415
  17. Wijaya, K., Kurniawan, M.A., Saputri, W.D., Trisunaryanti, W., Mirzan, M., Hariani, P.L., Tikoalu, A.D. (2021). Synthesis of nickel catalyst supported on ZrO2/SO4 pillared bentonite and its application for conversion of coconut oil into gasoline via hydrocracking process. Journal of Environmental Chemical Engineering, 9(4). DOI: 10.1016/j.jece.2021.105399
  18. Ibrahim, M.A., El-Araby, R., Abdelkader, E., Saied, M. El, Abdelsalam, A.M., Ismail, E.H. (2023). Waste cooking oil processing over cobalt aluminate nanoparticles for liquid biofuel hydrocarbons production. Scientific Reports, 13(1), 1–17. DOI: 10.1038/s41598-023-30828-0
  19. Rosmawati, R., Arita, S., Komariyah, L. N., Nazaruddin, N., Alfrenando, O. (2019). The effect of H-USY catalyst in catalytic cracking of waste cooking oil to produce biofuel. Indonesian Journal of Fundamental and Applied Chemistry, 4(2), 67–71. DOI: 10.24845/ijfac.v4.i2.67
  20. Salamah, S., Trisunaryanti, W., Kartini, I., Purwono, S. (2022). Hydrocracking of waste cooking oil into biofuel using mesoporous silica from Parangtritis beach sand synthesized with sonochemistry. Silicon, 14(7), 3583–3590. DOI: 10.1007/s12633-021-01117-0
  21. Hasanudin, H., Rachmat, A., Said, M., Wijaya, K. (2020). Kinetic model of crude palm oil hydrocracking over Ni/Mo ZrO₂–pillared bentonite catalyst. Periodica Polytechnica Chemical Engineering, 64(2), 238–247. DOI: 10.3311/PPch.14765
  22. Zhang, H., Lin, H., Wang, W., Zheng, Y., Hu, P. (2014). Hydroprocessing of waste cooking oil over a dispersed nano catalyst: Kinetics study and temperature effect. Applied Catalysis B: Environmental, 150–151, 238–248. DOI: 10.1016/j.apcatb.2013.12.006
  23. Khodadadi, M.R., Malpartida, I., Tsang, C.W., Lin, C.S.K., Len, C. (2020). Recent advances on the catalytic conversion of waste cooking oil. Molecular Catalysis, 111128. DOI: 10.1016/j.mcat.2020.111128
  24. Moodley, K. (2015). Catalytic hydrocracking of waste vegetable oil over transition metal-based catalysts: Selective production of jet fuel range alkanes. Master’s thesis, University of KwaZulu-Natal. Retrieved from https://researchspace.ukzn.ac.za/bitstream/handle/10413/13572/Moodley_Keldon_2015.pdf
  25. Levenspiel, O. (1999). Chemical reaction engineering. Industrial & Engineering Chemistry Research, 38(11), 4140–4143. DOI: 10.1021/ie990488g
  26. Hanafi, S.A., Elmelawy, M.S., Shalaby, N.H., El-Syed, H.A., Eshaq, G., Mostafa, M.S. (2016). Hydrocracking of waste chicken fat as a cost-effective feedstock for renewable fuel production: A kinetic study. Egyptian Journal of Petroleum, 25(4), 531–537. DOI: 10.1016/j.ejpe.2015.11.006
  27. Murachman, B., Deendarlianto, D., Nissarly, H. F., & Hasyim, W. (2014). Experimental study on hydrocracking process of Asbuton hydrocarbon based on the aromatic, and waxy residue based on paraffinic, by using Pt/Pd and γ-alumina catalyst in a fixed bed reactor. ASEAN Journal of Chemical Engineering, 14(1), 59. DOI: 10.22146/ajche.49716

Last update:

No citation recorded.

Last update:

No citation recorded.