skip to main content

Oxidative Oligomerization of Fischer–Tropsch Internal Olefins Catalyzed by Metal Octoates of s, p and d Block Elements

1Research Institute "Nanotechnologies and New Materials", Platov South-Russian State Polytechnic University (NPI), Novocherkassk 346428, Russian Federation

2LLC "Himpostavshchik-Don", Aksai, 346720, Russian Federation

Received: 6 Mar 2025; Revised: 25 Apr 2025; Accepted: 17 May 2025; Available online: 26 May 2025; Published: 30 Oct 2025.
Editor(s): Dmitry Yu. Murzin
Open Access Copyright (c) 2025 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

In the present work we further expanded the scope of the study of the oxidative oligomerization process of synthetic hydrocarbon fraction obtained by Fischer–Tropsch synthesis with a total olefin content (consisting predominantly internal/branched olefins) of 10 % with the aim of producing poly-α-olefin like lubricant material. The oxidative oligomerization was carried out using commercially available metal octoates based on Co, Mn, Zn, Ca, Ba, Li, Zr, Cu and Pb and their combinations as catalyst. It was established that the yield of the oligomerization reaction depending on the active metal component used decreased in the following order: Ba > Zr > Zn > Co > Mn > Ca > Li > Cu > Pb. While at the same time, the oxidative oligomerization reaction carried out using bimetallic catalytic systems did not led to any significant increase in the product yield. The oxidative oligomerization reaction using Ba octoate as catalyst gave a yield of 30.4 % and had a kinematic viscosity at 100 °C of 3.6 cSt, Viscosity Index value of 201 and pour point of minus 10. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Oligomerization; synthetic hydrocarbons; metal octoate; synthetic lubricant; Fischer–Tropsch synthesis products
Funding: Ministry of Science and Higher Education of the Russian Federation under contract FENN-2024-0002

Article Metrics:

  1. Wu, M.M., Ho, S.C., Forbus, T.R. (2006). Synthetic lubricant base stock processes and products. Practical advances in petroleum processing, 553-577
  2. Wu, M.M., Ho, S.C., Luo, S. (2017). Synthetic lubricant base stock. Springer Handbook of Petroleum Technology, 1043-1061. DOI: 10.1007/978-3-319-49347-3_35
  3. Hanifpour, A., Bahri-Laleh, N., Mohebbi, A., Nekoomanesh-Haghighi, M. (2022). Oligomerization of higher α-olefins to poly (α-olefins). Iranian Polymer Journal, 1-20. DOI: 10.1007/s13726-021-01011-x
  4. Benda, R., Bullen, J., Plomer, A. (1996). Synthetics basics: Polyalphaolefins – base fluids for high‐performance lubricants. Journal of Synthetic Lubrication, 13(1), 41-57. DOI: 10.1002/jsl.3000130105
  5. Rudnick, L. R., & Shubkin, R. L. (Eds.). (1999). Synthetic lubricants and high-performance functional fluids, revised and expanded. CRC Press
  6. Ray, S., Rao, P.V., Choudary, N.V. (2012). Poly‐α‐olefin‐based synthetic lubricants: a short review on various synthetic routes. Lubrication Science, 24(1), 23-44. DOI: 10.1002/ls.166
  7. Global Poly Alpha Olefin Market Overview Source: https://www.marketresearchfuture.com/reports/poly-alpha-olefin-market-29515 (1 March 2025). Citing Internet sources URL
  8. Ritter, T. H., & Alt, H. G. (2019). Homogeneous and heterogeneous oligomerization reactions of olefins with unbridged metallocene catalysts. Polyolefins Journal, 6(2), 107-116. DOI: 10.22063/poj.2018.2258.1119
  9. Nifant’ev, I.E., Vinogradov, A.A., Vinogradov, A.A., Sedov, I.V., Dorokhov, V.G., Lyadov, A.S., Ivchenko, P.V. (2018). Structurally uniform 1-hexene, 1-octene, and 1-decene oligomers: Zirconocene/MAO-catalyzed preparation, characterization, and prospects of their use as low-viscosity low-temperature oil base stocks. Applied Catalysis A: General, 549, 40-50. DOI: 10.1016/j.apcata.2017.09.016
  10. Huang, Q., Chen, L., Ma, L., Fu, Z., Yang, W. (2005). Synthesis and characterization of oligomer from 1-decene catalyzed by supported Ziegler–Natta catalyst. European Polymer Journal, 41(12), 2909-2915. DOI: 10.1016/j.eurpolymj.2005.05.040
  11. Yang, P., Fu, Z., Fan, Z. (2018). 1-Hexene polymerization with supported Ziegler-Natta catalyst: Correlation between catalyst particle fragmentation and active center distribution. Molecular Catalysis, 447, 13-20. DOI: 10.1016/j.mcat.2017.12.040
  12. Huang, Q., Chen, L., Sheng, Y., Ma, L., Fu, Z., Yang, W. (2006). Synthesis and characterization of oligomer from 1‐decene catalyzed by AlCl3/TiCl4/SiO2/Et2AlCl. Journal of Applied Polymer Science, 101(1), 584-590. DOI: 10.1002/app.23530
  13. Ohn, N., Kim, J.G. (2019). Studies on Poly α‐Olefin Synthesis by AlCl3‐catalyzed Cationic Polymerization: Concentration Effect on Molecular Weight and Viscosity. Bulletin of the Korean Chemical Society, 40(3), 289-292. DOI: 10.1002/bkcs.11678
  14. Kramer, A.I., Surana, P., Nandapurkar, P.J., Yang, N. (2009). U.S. Patent No. 7,547,811. Washington, DC: U.S. Patent and Trademark Office
  15. Shao, H., Gu, X., Wang, R., Wang, X., Jiang, T., Guo, X. (2020). Preparation of lubricant base stocks with high viscosity index through 1-decene oligomerization catalyzed by alkylaluminum chloride promoted by metal chloride. Energy & Fuels, 34(2), 2214-2220. DOI: 10.1021/acs.energyfuels.9b04104
  16. Kumar, G., Davis, M.A. (1993). U.S. Patent No. 5,196,635. Washington, DC: U.S. Patent and Trademark Office
  17. Theriot, K.J. (1991). U.S. Patent No. 5,068,487. Washington, DC: U.S. Patent and Trademark Office
  18. Brennan, J.A. (1968). U.S. Patent No. 3,382,291. Washington, DC: U.S. Patent and Trademark Office
  19. Sarin, R., Ray, S.S., Tuli, D.K., Rai, M.M., Ghosh, S., Bhatnagar, A.K. (1999). U.S. Patent No. 5,922,636. Washington, DC: U.S. Patent and Trademark Office
  20. Dimaio, A.J., Baranski, J.R., Bludworth, J.G., Gillis, D.J. (2005). U.S. Patent No. 6,858,767. Washington, DC: U.S. Patent and Trademark Office
  21. Wu, M.M.S., Jackson, A., Vann, W.D., Carey, J.T., Yang, N., Ho, S.C.H. (2013). U.S. Patent No. 8,399,390. Washington, DC: U.S. Patent and Trademark Office
  22. Hogg, J. M., Ferrer-Ugalde, A., Coleman, F., Swadźba-Kwaśny, M. (2019). Borenium ionic liquids as alternative to BF3 in polyalphaolefins (PAOs) synthesis. ACS Sustainable Chemistry & Engineering, 7 (17), 15044-15052. DOI: 10.1021/acssuschemeng.9b03621
  23. Muraza, O. (2015). Maximizing diesel production through oligomerization: a landmark opportunity for zeolite research. Industrial & Engineering Chemistry Research, 54(3), 781-789. DOI: 10.1021/ie5041226
  24. Sarin, R., Ray, S.S., Tuli, D.K., Rai, M.M., Ghosh, S., Bhatnagar, A.K., Yanjarappa, M.J.G. (1999). U.S. Patent No. 6,002,060. Washington, DC: U.S. Patent and Trademark Office
  25. Halmenschlager, C. M., Brar, M., Apan, I. T., de Klerk, A. (2016). Oligomerization of Fischer–Tropsch tail gas over H-ZSM-5. Industrial & Engineering Chemistry Research, 55(51), 13020-13031. DOI: 10.1021/acs.iecr.6b03861
  26. Kataria, Y.V., Kashparova, V.P., Klushin, V.A., Zubkova, M.A., Yakovenko, R.E., Zubkov, I.N. (2025). Synthesis of polyalphaolefin base oils using the Fischer–Tropsch method. Part 1. Oligomerization by a radical mechanism of a synthetic gasoline fraction enriched in alkenes, ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.], 68(4), 73-82. DOI: 10.6060/ivkkt.20256804.7084
  27. Kataria, Y.V., Kashparova, V.P., Klushin, V.А., Papeta, O.P., Yakovenko, R.E., Zubkov, I.N. (2024). Oligomerization of Fischer–Tropsch Olefins by Radical Initiation Method for Synthesizing Poly Olefin Base Oils, Bulletin of Chemical Reaction Engineering & Catalysis, 19(3), 539-547. DOI: 10.9767/bcrec.20205
  28. Kataria, Y.V., Klushin, V.A., Kashparova, V.P., Sotnikov, A.V., Yakovenko, R.Е., Savost'yanov, A.P., Zubkov, I.N. (2025). Oxidative oligomerization of a synthetic fraction of hydrocarbons from the Fischer–Tropsch synthesis, Kataliz v promyshlennosti, 25(1), 66-73. (In Russ.) DOI: 10.18412/1816-0387-2025-1-66-73
  29. Mogilevich, M.M. (1979). Oxidative polymerisation of vinyl monomers, Russian Chemical Reviews, 99, 199. DOI: 10.1070/RC1979v048n02ABEH002314
  30. Khan, E.H., Pal, S., De, P. (2013). N‐Hydroxyphthalimide‐Mediated Oxidation of Styrene by Molecular Oxygen, Macromolecular Chemistry and Physics, 214(19), 2181-2188. DOI: 10.1002/macp.201300335
  31. De, P., Sathyanarayana, D.N. (2002). High‐Pressure Kinetics of Oxidative Copolymerization of Styrene with α‐Methylstyrene, Macromolecular Chemistry and Physics, 203(15), 2218-2224. DOI: 10.1002/1521-3935(200211)203:15<2218::AID-MACP2218>3.0.CO;2-S
  32. Bieleman, J.H. (2002). Driers, Chimia, 56(5), 184-190. DOI: 10.2533/000942902777680568
  33. ASTM D6749-02 Standard Test Method for Pour Point of Petroleum Products (Automatic Air Pressure Method) (2018)
  34. ASTM D7042-21a Standard Test Method for Dynamic Viscosity and Density of Liquids by Stabinger Viscometer (and the Calculation of Kinematic Viscosity) (2021)
  35. Sharma, B., Verma, A., Kukrety, A., Saini, S., Kumar, U. (2023). Effective polymerization of linear higher alpha olefins from refinery stream for lubricant application, Polymer Engineering & Science, 63(6), 1691-1701. DOI: 10.1002/pen.26316
  36. Sotnikov, A.V., Stoyanov, V.M. (2021). Synthesis of zirconium siccatives (review). News of higher educational institutions. North Caucasian region. Technical sciences, (1 (209)), 78-84. (In Rus.) DOI: 10.17213/0321-2653-2021-1-78-84

Last update:

No citation recorded.

Last update:

No citation recorded.