skip to main content

Investigation of Ar/CH₄ Mixtures in Dielectric Barrier Discharge: A Simulation Approach for Hydrogen Production

Laboratory of Electrical Engineering and Renewable Energy (LGEER), Electrical Engineering Department, Faculty of Technology, Hassiba Benbouali University of Chlef, Algeria

Received: 10 Feb 2025; Revised: 9 Jun 2025; Accepted: 10 Jun 2025; Available online: 19 Jun 2025; Published: 30 Oct 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

This modeling study aimed to simulate hydrogen production through dielectric barrier discharge (DBD) in an argon-methane mixture at atmospheric pressure. Argon was selected as an additive due to its high ionization potential, which is expected to facilitate methane dissociation and enhance plasma reactivity. A series of simulations were conducted to assess the impact of varying argon concentrations (ranging from 0% to 90%) on hydrogen generation. A one-dimensional fluid model was employed to investigate methane conversion within the DBD reactor. This approach enabled a comprehensive evaluation of the effects of different Ar/CH₄ ratios, including pure methane, on reactor performance and key plasma characteristics, such as electron density, ion density, and species concentrations. The findings revealed that increasing the argon content significantly enhanced the ionization rate of methane and increased the discharge current, which directly correlated with higher electron density. Moreover, methane conversion efficiency and hydrogen production were found to be strongly dependent on the Ar/CH₄ ratio, with the highest hydrogen yield observed at a 50:50 argon-to-methane mixture. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Dielectric barrier discharge; fluid model; methane conversion; Hydrogen; plasma
Funding: Hassiba Benbouali University of Chlef

Article Metrics:

  1. Le, T. T., Sharma, P., Bora, B. J., Tran, V. D., Truong, T. H., Le, H. C., Nguyen, P. Q. P. (2024). Fueling the future: A comprehensive review of hydrogen energy systems and their challenges. International Journal of Hydrogen Energy, 54, 791–816. DOI: 10.1016/j.ijhydene.2023.08.044
  2. Younas, M., Shafique, S., Hafeez, A., Javed, F., Rehman, F. (2022). An Overview of Hydrogen Production: Current Status, Potential, and Challenges. Fuel, 316, 123317. DOI: 10.1016/j.fuel.2022.123317
  3. Xu, Z. (2022). Hydrogen Fuel-cell Technology in Electric Vehicles: Current Usage, Materials and Future Applications. Highlights in Science, Engineering and Technology, 17, 20–29. DOI: 10.54097/hset.v17i.2432
  4. Majd Alawi, N., Hung Pham, G., Barifcani, A., Hoang Nguyen, M., & Liu, S. (2019). Syngas formation by dry and steam reforming of methane using microwave plasma technology. IOP Conference Series: Materials Science and Engineering, 579(1), 012022. DOI: 10.1088/1757-899X/579/1/012022
  5. Sun, J., & Chen, Q. (2019). Kinetic roles of vibrational excitation in RF plasma assisted methane pyrolysis. Journal of Energy Chemistry, 39, 188–197. DOI: 10.1016/j.jechem.2019.01.028
  6. Gang, Y., Long, Y., Wang, K., Zhang, Y., Ren, X., Zhang, H., & Li, X. (2024). Plasma Catalytic Non-Oxidative Conversion of Methane into Hydrogen and Light Hydrocarbons. Plasma Chemistry and Plasma Processing. DOI: 10.1007/s11090-024-10497-1
  7. Tański, M., Reza, A., Przytuła, D., & Garasz, K. (2023). Ozone Generation by Surface Dielectric Barrier Discharge. Applied Sciences, 13(12), Article 12. DOI: 10.3390/app13127001
  8. Chavan, U., & Patil, S. (2024). Water Treatment Using Atmospheric Pressure Plasma: Dielectric Barrier Discharge and Corona Discharge Method, and Reactive Species Analysis. E3S Web of Conferences, 559, 03006. DOI: 10.1051/e3sconf/202455903006
  9. Paw, N. R., Kimura, T., Ishijima, T., Tanaka, Y., Nakano, Y., Uesugi, Y., Sueyasu, S., Watanabe, S., & Nakamura, K. (2021). Surface treatment of titanium dioxide nanopowder using rotary electrode dielectric barrier discharge reactor. Plasma Science and Technology, 23(10), 105505. DOI: 10.1088/2058-6272/ac0ed9
  10. Ahlawat, K., Jangra, R., Ish, A., Jain, N., & Prakash, R. (2024). A dielectric barrier discharge based low pressure narrow band far UV-C 222 nm excimer lamp and its efficiency analysis. Physica Scripta, 99(2), 025018. DOI: 10.1088/1402-4896/ad1cb9
  11. Zhou, A., Chen, D., Dai, B., Ma, C., Li, P., & Yu, F. (2017). Direct decomposition of CO 2 using self‐cooling dielectric barrier discharge plasma. Greenhouse Gases: Science and Technology, 7(4), 721–730. DOI: 10.1002/ghg.1683
  12. Kogelschatz, U. (2003). Dielectric-Barrier Discharges: Their History, Discharge Physics, and Industrial Applications. Plasma Chemistry and Plasma Processing, 23(1), 1–46. DOI: 10.1023/A:1022470901385
  13. Hameed, S., & Comini, E. (2024). Methane conversion for hydrogen production: Technologies for a sustainable future. Sustainable Energy & Fuels, 8(4), 670–683. DOI: 10.1039/D3SE00972F
  14. Akpasi, S.O., Akpan, J.S., Amune, U.O., Olaseinde, A.A., & Kiambi, S.L. (2024). Methane Advances: Trends and Summary from Selected Studies. Methane, 3(2), 276–313. DOI: 10.3390/methane3020016
  15. Khoja, A.H., Azad, A.K., Saleem, F., Khan, B.A., Naqvi, S.R., Mehran, M.T., & Amin, N.A.S. (2020). Hydrogen Production from Methane Cracking in Dielectric Barrier Discharge Catalytic Plasma Reactor Using a Nanocatalyst. Energies, 13(22), 5921. DOI: 10.3390/en13225921
  16. Song, L., Kong, Y., & Li, X. (2017). Hydrogen production from partial oxidation of methane over dielectric barrier discharge plasma and NiO/γ-Al2O3 catalyst. International Journal of Hydrogen Energy, 42(31), 19869–19876. DOI: 10.1016/j.ijhydene.2017.06.008
  17. Maitre, P.-A., Bieniek, M. S., & Kechagiopoulos, P. N. (2021). Modelling excited species and their role on kinetic pathways in the non-oxidative coupling of methane by dielectric barrier discharge. Chemical Engineering Science, 234, 116399. DOI: 10.1016/j.ces.2020.116399
  18. Benmoussa, A., Belasri, A., Larouci, B., Belkharroubi, F., & Belmiloud, N. (2022). Gas Temperature Effect in Methane DBD Reactor for Hydrogen Production. Plasma Medicine, 12(3), 41–58. DOI: 10.1615/PlasmaMed.2023047179
  19. Jo, S., Hoon Lee, D., Seok Kang, W., & Song, Y.-H. (2013). Methane activation using noble gases in a dielectric barrier discharge reactor. Physics of Plasmas, 20(8), 083509. DOI: 10.1063/1.4818795
  20. Jo, S., Hoon Lee, D., & Song, Y.-H. (2015). Product analysis of methane activation using noble gases in a non-thermal plasma. Chemical Engineering Science, 130, 101–108. DOI: 10.1016/j.ces.2015.03.019
  21. De Bie, C., van Dijk, J., & Bogaerts, A. (2015). The Dominant Pathways for the Conversion of Methane into Oxygenates and Syngas in an Atmospheric Pressure Dielectric Barrier Discharge. The Journal of Physical Chemistry C, 119 (39), 22331–22350. DOI: 10.1021/acs.jpcc.5b06515
  22. Saleem, F., Kennedy, J., Dahiru, U.H., Zhang, K., & Harvey, A. (2019). Methane conversion to H2 and higher hydrocarbons using non-thermal plasma dielectric barrier discharge reactor. Chemical Engineering and Processing - Process Intensification, 142, 107557. DOI: 10.1016/j.cep.2019.107557
  23. Hagelaar, G.J.M., & Pitchford, L.C. (2005). Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models. Plasma Sources Science and Technology, 14(4), 722–733. DOI: 10.1088/0963-0252/14/4/011
  24. Gadoum, A., & Benyoucef, D. (2019). Set of the Electron Collision Cross Sections for Methane Molecule. IEEE Transactions on Plasma Science, 47(3), 1505–1513. DOI: 10.1109/TPS.2018.2885610
  25. Kosarev, I.N., Aleksandrov, N.L., Kindysheva, S.V., Starikovskaia, S.M., & Starikovskii, A. Yu. (2008). Kinetics of ignition of saturated hydrocarbons by nonequilibrium plasma: CH4-containing mixtures. Combustion and Flame, 154(3), 569–586. DOI: 10.1016/j.combustflame.2008.03.007
  26. Gordillo-Vázquez, F.J., & Albella, J.M. (2004). Influence of the pressure and power on the non-equilibrium plasma chemistry of C2, C2H, C2H2, CH3 and CH4 affecting the synthesis of nanodiamond thin films from C2H2 (1%)/H2 /Ar-rich plasmas. Plasma Sources Science and Technology, 13(1), 50–57. DOI: 10.1088/0963-0252/13/1/007
  27. Denysenko, I.B., Xu, S., Long, J.., Rutkevych, P.P., Azarenkov, N.A., & Ostrikov, K. (2004). Inductively coupled Ar/CH4/H2 plasmas for low-temperature deposition of ordered carbon nanostructures. Journal of Applied Physics, 95(5), 2713–2724. DOI: 10.1063/1.1642762
  28. Nist chemical kinetics database. http://kinetcis.nist.gov/kinetics/
  29. The umist database for astrochemistry. http://udfa.ajmarkwick.net/index.php
  30. The kinetic database for astrochemistry. http://kida.astrochem-tools.org
  31. Mao, M., & Bogaerts, A. (2010). Investigating the plasma chemistry for the synthesis of carbon nanotubes/nanofibres in an inductively coupled plasma-enhanced CVD system: The effect of processing parameters. Journal of Physics D: Applied Physics, 43(31), 315203. DOI: 10.1088/0022-3727/43/31/315203
  32. Huntress, W.T., Jr. (1977). Laboratory studies of bimolecular reactions of positive ions in interstellar clouds, in comets, and in planetary atmospheres of reducing composition. The Astrophysical Journal Supplement Series, 33, 495. DOI: 10.1086/190439
  33. Jaritz, M., Hopmann, C., Behm, H., Kirchheim, D., Wilski, S., Grochla, D., Banko, L., Ludwig, A., Böke, M., Winter, J., Bahre, H., & Dahlmann, R. (2017). Influence of residual stress on the adhesion and surface morphology of PECVD-coated polypropylene. Journal of Physics D: Applied Physics, 50(44), 445301. DOI: 10.1088/1361-6463/aa8798
  34. De Bie, C., Verheyde, B., Martens, T., Van Dijk, J., Paulussen, S., & Bogaerts, A. (2011). Fluid Modeling of the Conversion of Methane into Higher Hydrocarbons in an Atmospheric Pressure Dielectric Barrier Discharge. Plasma Processes and Polymers, 8(11), 1033–1058. DOI: 10.1002/ppap.201100027
  35. Zhang Zeng-Hui, Zhang Guan-Jun, Shao Xian-Jun, Chang Zheng-Shi, Peng Zhao-Yu, Xu Hao, (2012). Modelling study of dielectric barrier glow discharge in Ar/NH3 mixture at atmospheric pressure. Acta Physica Sinica, 61(24), 245205. DOI: 10.7498/aps.61.245205
  36. Barni, R., & Riccardi, C. (2018). Gas-phase evolution of Ar/H2O and Ar/CH4 dielectric barrier discharge plasmas. The European Physical Journal D, 72(4), 62. DOI: 10.1140/epjd/e2018-80570-8

Last update:

No citation recorded.

Last update:

No citation recorded.