skip to main content

Characterization of Silver Nanoparticles Prepared via Green Synthesis from Amomum Subulatum: Investigation of its Antioxidant, Antimicrobial and Catalytic Properties in Dye Degradation

1School of Engineering & Technology, Sushant University, Sector-55, Gurugram-122003-Haryana, India

2Department of Biotechnology, Government College for Girls, Sec-14, Gurugram-122001-Haryana, India

Received: 7 Apr 2025; Revised: 23 May 2025; Accepted: 24 May 2025; Available online: 17 Jun 2025; Published: 30 Oct 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

The seeds extract of Amomum Subulatum commonly known as black cardamom is used for preparing Silver Nanoparticles (AgNps) via green route. The characterization of these nanoparticles was done by UV-visible, Fourier transform Infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM) techniques. The UV-vis spectra showed sharp absorption maximum at 432 nm that confirmed that AgNPs were synthesized successfully. The TEM measurements indicated that AgNps are mostly spherical with a few having hexagonal and trigonal shapes with size range of 13-21 nm. Dynamic Light Scattering (DLS) confirmed the stability of AgNps having negative zeta potential. XRD confirmed the mono-crystallinity of the prepared AgNps. A significant zone of inhibition is observed by these nanoparticles against gram positive and gram-negative bacteria. These nanoparticles exhibit a significant catalytic activity with respect of 4-nitrophenol (4-NP). The synthesized AgNps act as a catalyst and degraded the organic dyes, Methylene Blue (MB) and Methylene Orange (MO) by Sodium borohydride (NaBH4) as confirmed by UV-vis spectroscopy. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Green Synthesis; Silver nanoparticles; Black cardamom; Catalytic activity; Dye degradation; Antibacterial activity

Article Metrics:

  1. Dhiman, J., Kundu, V., Kumar, S., Kumar, R., Chakarvarti, S.K. (2014). Eco-friendly Synthesis and Characterization of Silver Nanoparticles and Evaluation of Their Antibacterial Activity. American Journal of Materials Science and Technology, 3(1), 13–21. DOI: 10.7726/ajmst.2014.1002
  2. Vasireddy, R., Paul, R., Mitra, A.K. (2012). Green synthesis of silver nanoparticles and the study of optical properties. Nanomaterials and Nanotechnology, 2(1), 1–6. DOI: 10.5772/52329
  3. Ghosh, T., Chattopadhyay, A., Mandal, A.C., Pramanik, S., Kuiri, P.K. (2020). Optical, structural, and antibacterial properties of biosynthesized Ag nanoparticles at room temperature using Azadirachta indica leaf extract. Chinese Journal of Physics, 68, 835–848. DOI: 10.1016/j.cjph.2020.10.025
  4. Khan, A.N., Ali Aldowairy, N.N., Saad Alorfi, H.S., Aslam, M., Bawazir, W.A.B., Hameed, A., Soomro, M.T. (2022). Excellent Antimicrobial, Antioxidant, and Catalytic Activities of Medicinal Plant Aqueous Leaf Extract Derived Silver Nanoparticles. Processes, 10(10), 1–24. DOI: 10.3390/pr10101949
  5. Mahiuddin, M., Saha, P., Ochiai, B. (2020). Green synthesis and catalytic activity of silver nanoparticles based on piper chaba stem extracts. Nanomaterials, 10(9), 1–15. DOI: 10.3390/nano10091777
  6. Borhamdin, S., Shamsuddin, M., Alizadeh, A. (2016). Biostabilised icosahedral gold nanoparticles: synthesis, cyclic voltammetric studies and catalytic activity towards 4-nitrophenol reduction. Journal of Experimental Nanoscience, 11(7), 518–530. DOI: 10.1080/17458080.2015.1090021
  7. Seo, Y.S., Ahn, E.Y., Park, J., Kim, T.Y., Hong, J.E., Kim, K., Park, Y., Park, Y. (2017). Catalytic reduction of 4-nitrophenol with gold nanoparticles synthesized by caffeic acid. Nanoscale Research Letters, 12(1), 1–11. DOI: 10.1186/s11671-016-1776-z
  8. Thomas, O.E., Alabi, O.S., Osharode, P.E. (2023). Characterization, antimicrobial and catalytic activities of silver nanoparticles biosynthesized using aqueous extract of Euphorbia graminea. Acta Pharmaceutica Sciencia, 61(2), 165–182. DOI: 10.23893/1307-2080.APS6112
  9. Venkatesham, M., Ayodhya, D., Madhusudhan, A., Santoshi Kumari, A., Veerabhadram, G., Girija Mangatayaru, K. (2014). A Novel Green Synthesis of Silver Nanoparticles Using Gum Karaya: Characterization, Antimicrobial and Catalytic Activity Studies. Journal of Cluster Science, 25(2), 409–422. DOI: 10.1007/s10876-013-0620-1
  10. Wu, S., Yan, S., Qi, W., Huang, R., Cui, J., Su, R., He, Z. (2015). Green synthesis of gold nanoparticles using aspartame and their catalytic activity for p-nitrophenol reduction. Nanoscale Research Letters, 10(1), 0–6. DOI: 10.1186/s11671-015-0910-7
  11. Roy, A., Mohanta, B. (2019). Microwave-assisted green synthesis of Gold nanoparticles and its catalytic activity. Autumn 2019 J Nano Dimens, 10(4), 359–367
  12. Ganash, A.A. (2019). Electrochemical properties and mechanistic study of the green synthesis of silver nanoparticles using Bardaqush extract solution. Materials Research Express, 6(6), 065024. DOI: 10.1088/2053-1591/ab0d40
  13. Ismail, M., Xiangke, W., Khan, A.A., Khan, Q. (2023). Amomum subalatum leaf extract derived silver nanoparticles for eco-friendly spectrophotometric detection of Hg(II) ions in water. Chemical Physics Impact, 6(December 2022), 1–6. DOI: 10.1016/j.chphi.2022.100148
  14. Keerthana, B., Geetha, R. V, Rajeshkumar, S. (2021). Evaluation of Antidiabetic and Cytotoxic Effect of Boerhavia Diffusa Mediated Selenium Nanoparticles. Nat. Volatiles & Essent Oils, 8(6), 5891–5900
  15. Philip, D. (2010). Green synthesis of gold and silver nanoparticles using Hibiscus rosa sinensis. Physica E: Low-Dimensional Systems and Nanostructures, 42(5), 1417–1424. DOI: 10.1016/j.physe.2009.11.081
  16. Rajalekshmi, Lohithan, R., Raj, R., Prakash, P., Santosh, A., Theertha, V., Chandran, S. (2020). Green synthesis of silver nanoparticles from Justicia adhatodaplant extract with its diverse properties. Journal of Physics: Conference Series, 1706(1), 1–4. DOI: 10.1088/1742-6596/1706/1/012012
  17. Ahmad, N., Sharma, S. (2012). Green Synthesis of Silver Nanoparticles Using Extracts of Ananas comosus. Green and Sustainable Chemistry, 2(November), 141–147. DOI: 10.4236/gsc.2012.24020
  18. Maity, G.N., Maity, P., Choudhuri, I. (2020). Green synthesis, characterization, antimicrobial and cytotoxic effect of silver nanoparticles using arabinoxylan isolated from Kalmegh. International Journal of Biological Macromolecules, 1–22. DOI: 10.1016/j.ijbiomac.2020.06.215
  19. Rao, Y.S., Kotakadi, V.S., Prasad, T.N.V.K. V, Reddy, A. V, Gopal, D.V.R.S. (2013). Green synthesis and spectral characterization of silver nanoparticles from Lakshmi tulasi ( Ocimum sanctum ) leaf extract. Spectrochimica Acta Part A : Molecular and Biomolecular Spectroscopy, 103, 156–159. DOI: 10.1016/j.saa.2012.11.028
  20. State, K. (2018). Biosynthesis of silver nanoparticles using azadirachta indica leaf extract and assessment of its antibacterial activity on some pathogenic enteric bacteria. International Journal of Novel Research in Life Sciences, 5(2), 2005–2011
  21. Saxena, A., Tripathi, R.M., Singh, R.P. (2010). Synthesis of silver nanoparticles using onion ( Allium cepa ) extract and their antibacterial activity. Digest Journal of Nanomaterials and Biostructures, 5(April), 427–432
  22. Amina, M., Musayeib, N.M. Al, Alarfaj, N.A., El-tohamy, M.F. (2020). Antibacterial and Immunomodulatory Potentials of Biosynthesized Ag , Au , Ag-Au Bimetallic Alloy Nanoparticles Using the Asparagus racemosus Root Extract. nanomaterials, 10(10), 2453. DOI: 10.3390/nano10122453
  23. Sarkar, M., Denrah, S., Patra, M., Basu, T. (2020). Studies on the Antibacterial and Catalytic Activities of Silver Nanoparticles Synthesized from Cyperus rotundus L . Journal of Cluster Science, 9, 1–14. DOI: 10.1007/s10876-020-01785-9
  24. Ahmad, N., Sharma, S., Shamsi, A., Narayan, A. (2014). Green Synthesis of Silver Nanoparticles by Exploiting Ayurvedic Plant Shalaparni. Journal of Bionanoscience, 8(1), 45–50. DOI: 10.1166/jbns.2014.1200
  25. Kushwah, M., Bhadauria, S., Singh, K.P., Gaur, M.S. (2019). Antibacterial and Antioxidant Activity of Biosynthesized Silver Nanoparticles Produced by Aegle marmelos Fruit Peel Extract. Analytical Chemistry Letters, 7928, 329–344. DOI: 10.1080/22297928.2019.1626279
  26. Sharada, S.O.V. (2015). Green Synthesis and Characterization of Silver Nanoparticles and Evaluation of their Antibacterial Activity using Elettaria Cardamom Seeds. Journal of Nanomedicine & Nanotechnology, 06(02), 2–5. DOI: 10.4172/2157-7439.1000266
  27. Tian, Y., Luo, J., Wang, H., Zaki, H.E.M., Yu, S., Wang, X., Ahmed, T., Shahid, M.S., Yan, C., Chen, J., Li, B. (2022). Bioinspired Green Synthesis of Silver Nanoparticles Using Three Plant Extracts and Their Antibacterial Activity against Rice Bacterial Leaf Blight Pathogen Xanthomonas oryzae pv. oryzae. Plants, 11(21), 1–15. DOI: 10.3390/plants11212892
  28. Ajaykumar, A.P., Mathew, A., Chandni, A.P., Varma, S.R., Jayaraj, K.N., Sabira, O., Rasheed, V.A., Binitha, V.S., Swaminathan, T.R., Basheer, V.S., Giri, S., Chatterjee, S. (2023). Green Synthesis of Silver Nanoparticles Using the Leaf Extract of the Medicinal Plant, Uvaria narum and Its Antibacterial, Antiangiogenic, Anticancer and Catalytic Properties. Antibiotics, 12(3), 1–16. DOI: 10.3390/antibiotics12030564
  29. Rafi, A., Asif, M., Alam, T., Iqbal, Z., Tahir, Z., Elahi, F. (2020). Silver Nano Particles ( AgNP ) Synthesis Using Apple Extract. Bulletin of Environment, Pharmacology and Life Sciences, 9(10), 103–106
  30. Pattanayak, M., Nayak, P.L. (2013). Green Synthesis of Gold Nanoparticles Using Elettaria cardamomum ( ELAICHI ) Aqueous Extract. World Journal of Nano Science & Technology, 2(1), 1–5. DOI: 10.5829/idosi.wjnst.2013.2.1.21131
  31. Noah, N. (2019). Chapter 6: Green synthesis; Characterization and application of silver and gold nanoparticles. In Green Synthesis, Characterization and Applications of Nanoparticles, pp. 111–135. DOI: 10.1016/B978-0-08-102579-6.00006-X
  32. Rastogi, L., Arunachalam, J. (2013). Green synthesis route for the size controlled synthesis of biocompatible gold nanoparticles using aqueous extract of garlic (Allium sativum). Advanced Materials Letters, 4(7), 548–555. DOI: 10.5185/amlett.2012.11456
  33. Logan, T., Ly, M. (2013). Gold Nanoparticle Interaction with Cell Membranes. Worcester Polytechnic Institute, 1-102
  34. Rao, B.L., Gouda, G.P., Shivananda, C.S. (2020). Green synthesis of silver nanoparticles using Hibiscus Rosa Sinensis flower extract. 3rd International Conference on Condensed Matter and Applied Physics (Icc-2019), 2220(May), 020103. DOI: 10.1063/5.0002996
  35. Alex, K.V., Pavai, P.T., Rugmini, R., Prasad, M.S., Kamakshi, K., Sekhar, K.C. (2020). Green Synthesized Ag Nanoparticles for Bio-Sensing and Photocatalytic Applications. ACS Omega, 5, 13123–13129. DOI: 10.1021/acsomega.0c01136
  36. Possomato-Vieira, José S. and Khalil, R.A.K., Modeling, O. 2. 0. E.S.E. and S. (2017). Hyperthermia Using Nanoparticles – Promises and Pitfalls. Physiology & behavior, 176(12), 139–148. DOI: 10.3109/02656736.2015.1120889
  37. Zhang, D., Ma, X.L., Gu, Y., Huang, H., Zhang, G.W. (2020). Green Synthesis of Metallic Nanoparticles and Their Potential Applications to Treat Cancer. Frontiers in Chemistry, 8, 1–18. DOI: 10.3389/fchem.2020.00799
  38. Borah, D., Das, N., Sarmah, P., Ghosh, K., Chandel, M., Rout, J., Pandey, P., Ghosh, N.N., Bhattacharjee, C.R. (2023). A facile green synthesis route to silver nanoparticles using cyanobacterium Nostoc carneum and its photocatalytic, antibacterial and anticoagulative activity. Materials Today Communications, 34, 105110. DOI: 10.1016/j.mtcomm.2022.105110
  39. Dhir, S., Dutt, R., Singh, R.P., Chauhan, M., Virmani, T., Kumar, G., Alhalmi, A., Aleissa, M.S., Rudayni, H.A., Al-Zahrani, M. (2023). Amomum subulatum Fruit Extract Mediated Green Synthesis of Silver and Copper Oxide Nanoparticles: Synthesis, Characterization, Antibacterial and Anticancer Activities. Processes, 11(9), 2698. DOI: 10.3390/pr11092698
  40. Ihsan, M., Niaz, A., Rahim, A., Zaman, M.I., Arain, M.B., Sirajuddin, Sharif, T., Najeeb, M. (2015). Biologically synthesized silver nanoparticle-based colorimetric sensor for the selective detection of Zn2+. RSC Advances, 5(111), 91158–91165. DOI: 10.1039/c5ra17055a
  41. Shan, B., Cai, Y.Z., Sun, M., Corke, H. (2005). Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents. Journal of Agricultural and Food Chemistry, 53(20), 7749–7759. DOI: 10.1021/jf051513y
  42. Khuat, Q.V., Kalashnikova, E.A., Nguyen, H.T., Slovareva, O.Y., Kirakosyan, R.N. (2022). Antifungal activity of Black cardamom ( Amomum tsao-ko Crevost et Lemairé) plant extracts against Fusarium oxysporum Schlechtend and their prospect of developing fungicide for sustainable agricultural production. IOP Conference Series: Earth and Environmental Science, 1112 (1). DOI: 10.1088/1755-1315/1112/1/012103
  43. Preetha, D., Arun, R., Kumari, P., Aarti, C. (2013). Synthesis and characterization of silver nanoparticles using cannonball leaves and their cytotoxic activity against Mcf-7 cell line. Journal of Nanotechnology, 2013, 1–5. DOI: 10.1155/2013/598328
  44. Vidyasagar, N., Patel, R.R., Singh, S.K., Singh, M. (2023). Green synthesis of silver nanoparticles: methods, biological applications, delivery and toxicity. Materials Advances, 4(8), 1831–1849. DOI: 10.1039/d2ma01105k
  45. Sharifi-Rad, M., Pohl, P., Epifano, F., Álvarez-Suarez, J.M. (2020). Green synthesis of silver nanoparticles using astragalus tribuloides delile. Root extract: Characterization, antioxidant, antibacterial, and anti-inflammatory activities. Nanomaterials, 10(12), 1–17. DOI: 10.3390/nano10122383
  46. Alduraihem, N.S., Bhat, R.S., Al-Zahrani, S.A., Elnagar, D.M., Alobaid, H.M., Daghestani, M.H. (2023). Anticancer and Antimicrobial Activity of Silver Nanoparticles Synthesized from Pods of Acacia nilotica. Processes, 11(2), 1–16. DOI: 10.3390/pr11020301
  47. Aftab, R. A., Zaidi, S., Danish, M., Danish, M., Ansari, K. B., Rao, R. A. K., & Qyyum, M.A. (2023). Herbal medicinal waste black cardamom (Amomum subulatum) as a novel adsorbent for removing Cd(II) from water. International Journal of Environmental Science and Technology, 1–20. DOI: 10.1007/s13762-023-04996-5
  48. Ahmad Aftab, R., Zaidi, S., Aslam Parwaz Khan, A., Arish Usman, M., Khan, A.Y., Tariq Saeed Chani, M., Asiri, A.M. (2023). Removal of congo red from water by adsorption onto activated carbon derived from waste black cardamom peels and machine learning modeling. Alexandria Engineering Journal, 71, 355–369. DOI: 10.1016/j.aej.2023.03.055
  49. Singh, A.K., Tripathi, M., Srivastava, O.N., Verma, R.K. (2017). Silver Nanoparticles/Gelatin Composite: A New Class of Antibacterial Material. ChemistrySelect, 2(24), 7233–7238. DOI: 10.1002/slct.201701245
  50. Mishra, A.K., Tiwari, K.N., Saini, R., Kumar, P., Mishra, S.K., Yadav, V.B., Nath, G. (2020). Green Synthesis of Silver Nanoparticles from Leaf Extract of Nyctanthes arbor-tristis L. and Assessment of Its Antioxidant, Antimicrobial Response. Journal of Inorganic and Organometallic Polymers and Materials, 30(6), 2266–2278. DOI: 10.1007/s10904-019-01392-w
  51. Holzwarth, U., Gibson, N. (2011). The Scherrer equation versus the “Debye-Scherrer equation.” Nature Nanotechnology, 6(9), 534. DOI: 10.1038/nnano.2011.145
  52. Wang, J., Li, Y., Lu, Q., Hu, Q., Liu, P., Yang, Y., Li, G., Xie, H., Tang, H. (2021). Drying temperature affects essential oil yield and composition of black cardamom (Amomum tsao-ko). Industrial Crops and Products, 168. DOI: 10.1016/j.indcrop.2021.113580
  53. Singh, A.K., Srivastava, O.N. (2015). One-Step Green Synthesis of Gold Nanoparticles Using Black Cardamom and Effect of pH on Its Synthesis. Nanoscale Research Letters, 10(1), 1–12. DOI: 10.1186/s11671-015-1055-4
  54. Majumdar, R., Bag, B.G., Maity, N. (2013). Acacia nilotica ( Babool ) leaf extract mediated size-controlled rapid synthesis of gold nanoparticles and study of its catalytic activity. International Nano Letters, 3(53), 1–6. URL: http://www.inl-journal.com/content/3/1/53
  55. Singh, I., Gupta, S., Gautam, H.K., Dhawan, G., Kumar, P. (2021). Antimicrobial, radical scavenging, and dye degradation potential of nontoxic biogenic silver nanoparticles using Cassia fistula pods. Chemical Papers, 75(3), 979–991. DOI: 10.1007/s11696-020-01355-3
  56. Rauf, M.A., Meetani, M.A., Khaleel, A., Ahmed, A. (2010). Photocatalytic degradation of Methylene Blue using a mixed catalyst and product analysis by LC/MS. Chemical Engineering Journal, 157(2), 373–378. DOI: 10.1016/j.cej.2009.11.017
  57. Flores, N.M., Pal, U., Galeazzi, R., Sandoval, A. (2014). Effects of morphology, surface area, and defect content on the photocatalytic dye degradation performance of ZnO nanostructures. RSC Adv., 4(77), 41099–41110. DOI: 10.1039/C4RA04522J
  58. Soshnikova, V., Kim, Y.J., Singh, P., Huo, Y., Markus, J., Ahn, S., Castro-Aceituno, V., Kang, J., Chokkalingam, M., Mathiyalagan, R., Yang, D.C. (2018). Cardamom fruits as a green resource for facile synthesis of gold and silver nanoparticles and their biological applications. Artificial Cells, Nanomedicine and Biotechnology, 46(1), 108–117. DOI: 10.1080/21691401.2017.1296849
  59. Lo, K.M., Cheung, P.C.K. (2005). Antioxidant activity of extracts from the fruiting bodies of Agrocybe aegerita var. alba. Food Chemistry, 89 (4), 533–539. DOI: 10.1016/j.foodchem.2004.03.006
  60. Joseph, S., Mathew, B. (2015). Microwave-assisted green synthesis of silver nanoparticles and the study on catalytic activity in the degradation of dyes. Journal of Molecular Liquids, 204, 184–191. DOI: 10.1016/j.molliq.2015.01.027
  61. Moores, A., Goettmann, F. (2006). The plasmon band in noble metal nanoparticles: an introduction to theory and applications. New J. Chem., 30 (8), 1121–1132. DOI: 10.1039/B604038C
  62. Boruah, J.S., Devi, C., Hazarika, U., Bhaskar Reddy, P.V., Chowdhury, D., Barthakur, M., Kalita, P. (2021). Green synthesis of gold nanoparticles using an antiepileptic plant extract: in vitro biological and photo-catalytic activities. RSC Advances, 11(45), 28029–28041. DOI: 10.1039/D1RA02669K
  63. Bykkam, S., Ahmadipour, M., Narisngam, S., Kalagadda, V.R., Chidurala, S.C. (2015). RETRACTED: Extensive Studies on X-Ray Diffraction of Green Synthesized Silver Nanoparticles. Advances in Nanoparticles, 04(01), 1–10. DOI: 10.4236/anp.2015.41001
  64. Theivasanthi, T., Alagar, M. (2012). Electrolytic Synthesis and Characterizations of Silver Nanopowder. Nano Biomedicine and Engineering, 4(2), 1–12. DOI: 10.48550/arXiv.1111.0260
  65. Jalab, J., Abdelwahed, W., Kitaz, A., Al-Kayali, R. (2021). Green synthesis of silver nanoparticles using aqueous extract of Acacia cyanophylla and its antibacterial activity. Heliyon, 7(9), e08033. DOI: 10.1016/j.heliyon.2021.e08033
  66. Rezazadeh, N.H., Buazar, F., Matroodi, S. (2020). Synergistic effects of combinatorial chitosan and polyphenol biomolecules on enhanced antibacterial activity of biofunctionalaized silver nanoparticles. Scientific Reports, 10(1), 1–13. DOI: 10.1038/s41598-020-76726-7
  67. Danaei, M., Dehghankhold, M., Ataei, S., Hasanzadeh Davarani, F., Javanmard, R., Dokhani, A., Khorasani, S., Mozafari, M.R. (2018). Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics, 10(2), 1–17. DOI: 10.3390/pharmaceutics10020057
  68. Küp, F.Ö., Çoşkunçay, S., Duman, F. (2020). Biosynthesis of silver nanoparticles using leaf extract of Aesculus hippocastanum (horse chestnut): Evaluation of their antibacterial, antioxidant and drug release system activities. Materials Science and Engineering C, 107, 110207. DOI: 10.1016/j.msec.2019.110207
  69. Edison, T.J.I., Sethuraman, M.G. (2012). Instant green synthesis of silver nanoparticles using Terminalia chebula fruit extract and evaluation of their catalytic activity on reduction of methylene blue. Process Biochemistry, 47(9), 1351–1357. DOI: 10.1016/j.procbio.2012.04.025

Last update:

No citation recorded.

Last update:

No citation recorded.