skip to main content

Effect of Surface Stabilizers on the Optical Properties of ZnSe/ZnS:Mn/ZnS Nanocrystals

1Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City 70000, Viet Nam

2Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi 10000, Viet Nam

Received: 26 Jul 2025; Revised: 8 Oct 2025; Accepted: 9 Oct 2025; Available online: 12 Oct 2025; Published: 26 Dec 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

In this study, we produced nano-sized, spherical ZnSe/ZnS:Mn/ZnS in a non-toxic aqueous solvent with surface stabilizers such as 3-mercaptopropionic acid (MPA), polyethylene glycol (PEG), and starch. These surface stabilizers aid to prevent agglomeration and passivation, thereby stabilizing the nanoparticle surface. ZnSe/ZnS:Mn/ZnS nanocrystals (NCs) are cubic in structure. Changing the surface stabilizer and doping Mn metal does not alter the structure of the ZnSe base material, but it boosts fluorescence efficiency by 2.2 - 3.9 times. The fluorescence efficiency of ZnSe/ZnS:Mn/ZnS MPA NCs using MPA stabilizer is 73.95%, which is higher than the fluorescence efficiency of ZnSe/ZnS:Mn/ZnS Starch NCs (57.35%) using Starch stabilizer and higher than the fluorescence efficiency of ZnSe/ZnS:Mn/ZnS PEG NCs (41.72%) using PEG stabilizer. ZnSe/ZnS:Mn/ZnS MPA NCs are originally assessed for their potential use in biomedical applications. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Acid 3-mercaptopropionic; ZnSe/ZnS:Mn/ZnS; Surface stabilizers; Polyethylene glycol (PEG); Starch
Funding: Industrial University of Ho Chi Minh City under contract 23.1HH03

Article Metrics:

  1. Van, H.T., Vinh, N.D., Ca, N.X., Hien, N.T., Luyen, N.T., Do, P.V., Khien, N.V. (2020). Effects of ligand and chemical affinity of S and Se precursors on the shape, structure and optical properties of ternary CdS1−xSex alloy nanocrystals. Materials Letters, 264, 127387. DOI: 10.1016/j.matlet.2020.127387
  2. Ca, N.X., Van, H.T., Do, P. V., Thanh, L.D., Tan, P.M., Truong, N.X., Oanh, V.T.K., Binh, N.T., Hien, N.T. (2020). Influence of precursor ratio and dopant concentration on the structure and optical properties of Cu-doped ZnCdSe-alloyed quantum dots. RSC Advances, 10(43), 25618–25628. DOI: 10.1039/D0RA04257A
  3. Das, S., Mandal, K.C. (2012). Optical downconversion in rare earth (Tb3+ and Yb3+) doped CdS nanocrystals. Materials Letters, 66(1), 46–49. DOI: 10.1016/j.matlet.2011.08.034
  4. Senthilkumar, K., Kalaivani, T., Kanagesan, S., Balasubramanian, V. (2012). Synthesis and characterization studies of ZnSe quantum dots. Journal of Materials Science: Materials in Electronics, 23(11), 2048–2052. DOI: 10.1007/s10854-012-0701-1
  5. Zhao, Y., Yang, C., Zhang, S., Sun, G., Zhu, B., Wang, L., Zhang, J. (2024). Investigating the charge transfer mechanism of ZnSe QD/COF S-scheme photocatalyst for H2O2 production by using femtosecond transient absorption spectroscopy. Chinese Journal of Catalysis, 63, 258–269. DOI: 10.1016/S1872-2067(24)60069-0
  6. Vempuluru, N.R., Kwon, H., Parnapalle, R., Urupalli, B., Munnelli, N., Lee, Y., Marappan, S., Mohan, S., Murikinati, M.K., Muthukonda Venkatakrishnan, S., Kim, K., Ahn, C.W., Yang, J.-M. (2024). ZnS/ZnSe heterojunction photocatalyst for augmented hydrogen production: Experimental and theoretical insights. International Journal of Hydrogen Energy, 51, 524–539. DOI: 10.1016/j.ijhydene.2023.08.249
  7. Baum, F., da Silva, M.F., Linden, G., Feijo, D., Rieder, E.S., Santos, M.J.L. (2019). Growth dynamics of zinc selenide quantum dots: the role of oleic acid concentration and synthesis temperature on driving optical properties. Journal of Nanoparticle Research, 21(2), 42. DOI: 10.1007/s11051-019-4485-6
  8. Lin, S., Li, J., Pu, C., Lei, H., Zhu, M., Qin, H., Peng, X. (2020). Surface and intrinsic contributions to extinction properties of ZnSe quantum dots. Nano Research, 13(3), 824–831. DOI: 10.1007/s12274-020-2703-2
  9. Zahra, T., Alanazi, M.M., Alahmari, S.D., Abdelmohsen, S.A.M., Abdullah, M., Aman, S., Al-Sehemi, A.G., Henaish, A.M.A., Ahmad, Z., Tahir Farid, H.M. (2024). Hydrothermally synthesized ZnSe@FeSe nanocomposite: A promising candidate for energy storage devices. International Journal of Hydrogen Energy, 59, 97–106. DOI: 10.1016/j.ijhydene.2024.01.293
  10. El-assar, M., Taha, T.E., El-Samie, F.E.A., Fayed, H.A., Aly, M.H. (2023). ZnSe-based highly-sensitive SPR biosensor for detection of different cancer cells and urine glucose levels. Optical and Quantum Electronics. 55 (1), 76. DOI: 10.1007/s11082-022-04326-y
  11. Pechstedt, K., Whittle, T., Baumberg, J., Melvin, T. (2010). Photoluminescence of Colloidal CdSe/ZnS Quantum Dots: The Critical Effect of Water Molecules. The Journal of Physical Chemistry C, 114(28), 12069–12077. DOI: 10.1021/jp100415k
  12. Yu, J.H., Kim, J., Hyeon, T., Yang, J. (2019). Facile synthesis of manganese (II)-doped ZnSe nanocrystals with controlled dimensionality. The Journal of Chemical Physics, 151(24) DOI: 10.1063/1.5128511
  13. Yao, J.H., Elder, K.R., Guo, H., Grant, M. (1993). Theory and simulation of Ostwald ripening. Physical Review B, 47(21), 14110–14125. DOI: 10.1103/PhysRevB.47.14110
  14. Winiarz, J.G., Zhang, L., Lal, M., Friend, C.S., Prasad, P.N. (1999). Photogeneration, charge transport, and photoconductivity of a novel PVK/CdS-nanocrystal polymer composite. Chemical Physics, 245(1–3), 417–428. DOI: 10.1016/S0301-0104(99)00057-9
  15. Qi, L., Cölfen, H., Antonietti, M. (2001). Synthesis and Characterization of CdS Nanoparticles Stabilized by Double-Hydrophilic Block Copolymers. Nano Letters, 1(2), 61–65. DOI: 10.1021/nl0055052
  16. Lee, Y.-J., Kim, T.-G., Sung, Y.-M. (2006). Lattice distortion and luminescence of CdSe/ZnSe nanocrystals. Nanotechnology, 17(14), 3539–3542. DOI: 10.1088/0957-4484/17/14/030
  17. Jadhav, S.A. (2012). Functional self-assembled monolayers (SAMs) of organic compounds on gold nanoparticles. Journal of Materials Chemistry, 22(13), 5894. DOI: 10.1039/c2jm14239b
  18. Ghosh Chaudhuri, R., Paria, S. (2012). Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications. Chemical Reviews, 112(4), 2373–2433. DOI: 10.1021/cr100449n
  19. Huang, F., Peng, Y., Lin, C. (2006). Synthesis and Characterization of ZnS: Ag Nanocrystals Surface-capped with Thiourea1. Chemical Research in Chinese Universities, 22(6), 675–678. DOI: 10.1016/S1005-9040(06)60188-8
  20. Raievska, O., Stroyuk, O., Dzhagan, V., Solonenko, D., Zahn, D.R.T. (2020). Ultra-small aqueous glutathione-capped Ag–In–Se quantum dots: luminescence and vibrational properties. RSC Advances, 10(69), 42178–42193. DOI: 10.1039/D0RA07706B
  21. Basavaraj, U., Kumar, B.J., Mahesh, H.M. (2025). A Facile Synthesis of TGA Stabilized ZnSe Quantum Dots for Energy Harvesting Applications. In: Joseph D., P., V., J., Thangaraju, K. (eds) Proceedings of the International Conference on Emerging Multifunctional Materials and Devices for Sustainable Technologies. IEMDST 2024. Springer Proceedings in Physics, vol 567. Springer, Singapore. pp. 7–15. DOI: 10.1007/978-981-96-5863-3_2
  22. Operamolla, A., Punzi, A., Farinola, G.M. (2017). Synthetic Routes to Thiol‐Functionalized Organic Semiconductors for Molecular and Organic Electronics. Asian Journal of Organic Chemistry, 6(2), 120–138. DOI: 10.1002/ajoc.201600460
  23. Choi, M.G., Cho, M.J., Ryu, H., Hong, J., Chang, S.-K. (2017). Fluorescence signaling of thiophenol by hydrolysis of dinitrobenzenesulfonamide of 2-(2-aminophenyl)benzothiazole. Dyes and Pigments, 143, 123–128. DOI: 10.1016/j.dyepig.2017.04.026
  24. Castro, J. V., Dumas, C., Chiou, H., Fitzgerald, M.A., Gilbert, R.G. (2005). Mechanistic Information from Analysis of Molecular Weight Distributions of Starch. Biomacromolecules, 6(4), 2248–2259. DOI: 10.1021/bm0500401
  25. Singh, J., Kaur, L., McCarthy, O.J. (2007). Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications—A review. Food Hydrocolloids, 21(1), 1–22. DOI: 10.1016/j.foodhyd.2006.02.006
  26. Radosta, S., Haberer, M., Vorwerg, W. (2001). Molecular Characteristics of Amylose and Starch in Dimethyl Sulfoxide. Biomacromolecules, 2(3), 970–978. DOI: 10.1021/bm0100662
  27. Villwock, K., BeMiller, J.N. (2022). The Architecture, Nature, and Mystery of Starch Granules. Part 2. Starch - Stärke, 74(11–12) DOI: 10.1002/star.202100184
  28. Lane, M.E. (2011). Nanoparticles and the skin – applications and limitations. Journal of Microencapsulation, 28(8), 709–716. DOI: 10.3109/02652048.2011.599440
  29. Cole, A.J., David, A.E., Wang, J., Galbán, C.J., Yang, V.C. (2011). Magnetic brain tumor targeting and biodistribution of long-circulating PEG-modified, cross-linked starch-coated iron oxide nanoparticles. Biomaterials, 32(26), 6291–6301. DOI: 10.1016/j.biomaterials.2011.05.024
  30. Gamucci, O., Bertero, A., Gagliardi, M., Bardi, G. (2014). Biomedical Nanoparticles: Overview of Their Surface Immune-Compatibility. Coatings, 4(1), 139–159. DOI: 10.3390/coatings4010139
  31. Final Report on the Safety Assessment of Polyethylene Glycols (PEGs)-6,-8,-32,-75,-150,-14M,-20M. (1993). Journal of the American College of Toxicology. 12(5), 429-457. DOI: 10.3109/10915819309141598
  32. Dreborg, S., Akerblom, E.B. (1990). Immunotherapy with monomethoxypolyethylene glycol modified allergens. Critical Reviews in Therapeutic Drug Carrier Systems, 6(4), 315–365
  33. Yamaoka, T., Tabata, Y., Ikada, Y. (1994). Distribution and Tissue Uptake of Poly(ethylene glycol) with Different Molecular Weights after Intravenous Administration to Mice. Journal of Pharmaceutical Sciences, 83(4), 601–606. DOI: 10.1002/jps.2600830432
  34. Blume, G., Cevc, G. (1993). Molecular mechanism of the lipid vesicle longevity in vivo. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1146 (2), 157–168. DOI: 10.1016/0005-2736(93)90351-Y
  35. Torchilin, V.P., Omelyanenko, V.G., Papisov, M.I., Bogdanov, A.A., Trubetskoy, V.S., Herron, J.N., Gentry, C.A. (1994). Poly(ethylene glycol) on the liposome surface: on the mechanism of polymer-coated liposome longevity. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1195(1), 11–20. DOI: 10.1016/0005-2736(94)90003-5
  36. Thi Luong, B., Hyeong, E., Ji, S., Kim, N. (2012). Green synthesis of highly UV-orange emitting ZnSe/ZnS:Mn/ZnS core/shell/shell nanocrystals by a three-step single flask method. RSC Advances, 2(32), 12132. DOI: 10.1039/c2ra21309e
  37. Lan, G.-Y., Lin, Y.-W., Huang, Y.-F., Chang, H.-T. (2007). Photo-assisted synthesis of highly fluorescent ZnSe(S) quantum dots in aqueous solution. Journal of Materials Chemistry, 17(25), 2661. DOI: 10.1039/b702469j
  38. Lesnyak, V., Plotnikov, A., Gaponik, N., Eychmüller, A. (2008). Toward efficient blue-emitting thiol-capped Zn1−xCdxSe nanocrystals. Journal of Materials Chemistry, 18(42), 5142. DOI: 10.1039/b811859k
  39. Pathak, S., Davidson, M.C., Silva, G.A. (2007). Characterization of the Functional Binding Properties of Antibody Conjugated Quantum Dots. Nano Letters, 7(7), 1839–1845. DOI: 10.1021/nl062706i
  40. Song, F., Chan, W.C.W. (2011). Principles of conjugating quantum dots to proteins via carbodiimide chemistry. Nanotechnology, 22(49), 494006. DOI: 10.1088/0957-4484/22/49/494006
  41. Qiao, F., Kang, R., Liang, Q., Cai, Y., Bian, J., Hou, X. (2019). Tunability in the Optical and Electronic Properties of ZnSe Microspheres via Ag and Mn Doping. ACS Omega, 4(7), 12271–12277. DOI: 10.1021/acsomega.9b01539
  42. Yousefi, R., Azimi, H.R., Mahmoudian, M.R., Basirun, W.J. (2018). The effect of defect emissions on enhancement photocatalytic performance of ZnSe QDs and ZnSe/rGO nanocomposites. Applied Surface Science, 435, 886–893. DOI: 10.1016/j.apsusc.2017.11.183
  43. Tavakkoli Yaraki, M., Tayebi, M., Ahmadieh, M., Tahriri, M., Vashaee, D., Tayebi, L. (2017). Synthesis and optical properties of cysteamine-capped ZnS quantum dots for aflatoxin quantification. Journal of Alloys and Compounds, 690, 749–758. DOI: 10.1016/j.jallcom.2016.08.158
  44. Geszke, M., Murias, M., Balan, L., Medjahdi, G., Korczynski, J., Moritz, M., Lulek, J., Schneider, R. (2011). Folic acid-conjugated core/shell ZnS:Mn/ZnS quantum dots as targeted probes for two photon fluorescence imaging of cancer cells. Acta Biomaterialia, 7(3), 1327–1338. DOI: 10.1016/j.actbio.2010.10.012
  45. Geszke, M., Murias, M., Balan, L., Medjahdi, G., Korczynski, J., Moritz, M., Lulek, J., Schneider, R. (2011). Folic acid-conjugated core/shell ZnS:Mn/ZnS quantum dots as targeted probes for two photon fluorescence imaging of cancer cells. Acta Biomaterialia, 7(3), 1327–1338. DOI: 10.1016/j.actbio.2010.10.012
  46. Qu, L., Peng, X. (2002). Control of Photoluminescence Properties of CdSe Nanocrystals in Growth. Journal of the American Chemical Society, 124(9), 2049–2055. DOI: 10.1021/ja017002j
  47. Califano, M., Franceschetti, A., Zunger, A. (2005). Temperature Dependence of Excitonic Radiative Decay in CdSe Quantum Dots: The Role of Surface Hole Traps. Nano Letters, 5(12), 2360–2364. DOI: 10.1021/nl051027p
  48. Reiss, P., Protière, M., Li, L. (2009). Core/Shell Semiconductor Nanocrystals. Small, 5(2), 154–168. DOI: 10.1002/smll.200800841
  49. Califano, M., Franceschetti, A., Zunger, A. (2005). Temperature Dependence of Excitonic Radiative Decay in CdSe Quantum Dots: The Role of Surface Hole Traps. Nano Letters, 5(12), 2360–2364. DOI: 10.1021/nl051027p
  50. Reiss, P., Protière, M., Li, L. (2009). Core/Shell Semiconductor Nanocrystals. Small, 5(2), 154–168. DOI: 10.1002/smll.200800841
  51. Talapin, D. V., Mekis, I., Götzinger, S., Kornowski, A., Benson, O., Weller, H. (2004). CdSe/CdS/ZnS and CdSe/ZnSe/ZnS Core−Shell−Shell Nanocrystals. The Journal of Physical Chemistry B, 108(49), 18826–18831. DOI: 10.1021/jp046481g
  52. Talapin, D. V., Rogach, A.L., Kornowski, A., Haase, M., Weller, H. (2001). Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine−Trioctylphosphine Oxide−Trioctylphospine Mixture. Nano Letters, 1(4), 207–211. DOI: 10.1021/nl0155126
  53. Li, C.L., Nishikawa, K., Ando, M., Enomoto, H., Murase, N. (2007). Highly luminescent water-soluble ZnSe nanocrystals and their incorporation in a glass matrix. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 294(1–3), 33–39. DOI: 10.1016/j.colsurfa.2006.07.052
  54. López-Esparza, J., Espinosa-Cristóbal, L.F., Donohue-Cornejo, A., Reyes-López, S.Y. (2016). Antimicrobial Activity of Silver Nanoparticles in Polycaprolactone Nanofibers against Gram-Positive and Gram-Negative Bacteria. Industrial & Engineering Chemistry Research, 55(49), 12532–12538. DOI: 10.1021/acs.iecr.6b02300
  55. Cao, M., Wang, Y., Guo, C., Qi, Y., Hu, C., Wang, E. (2004). A Simple Route Towards CuO Nanowires and Nanorods. Journal of Nanoscience and Nanotechnology, 4(7), 824–828. DOI: 10.1166/jnn.2004.822
  56. He, Y., Lu, H., Sai, L., Su, Y., Hu, M., Fan, C., Huang, W., Wang, L. (2008). Microwave Synthesis of Water‐Dispersed CdTe/CdS/ZnS Core‐Shell‐Shell Quantum Dots with Excellent Photostability and Biocompatibility. Advanced Materials, 20(18), 3416–3421. DOI: 10.1002/adma.200701166
  57. You, S., Fiedorowicz, M., Lim, S. (1999). Molecular Characterization of Wheat Amylopectins by Multiangle Laser Light Scattering Analysis. Cereal Chemistry, 76(1), 116–121. DOI: 10.1094/CCHEM.1999.76.1.116
  58. Peng, Q.-J., Perlin, A.S. (1987). Observations on N.M.R. spectra of starches in dimethyl sulfoxide, iodine-complexing, and solvation in water-di-methyl sulfoxide. Carbohydrate Research, 160, 57–72. DOI: 10.1016/0008-6215(87)80303-8
  59. Lee, G.-J., Anandan, S., Masten, S.J., Wu, J.J. (2014). Sonochemical Synthesis of Hollow Copper Doped Zinc Sulfide Nanostructures: Optical and Catalytic Properties for Visible Light Assisted Photosplitting of Water. Industrial & Engineering Chemistry Research, 53(21), 8766–8772. DOI: 10.1021/ie500663n
  60. Nguyen, T.P., Lam, Q.V., Vu, T.B. (2018). Effects of precursor molar ratio and annealing temperature on structure and photoluminescence characteristics of Mn-doped ZnS quantum dots. Journal of Luminescence, 196, 359–367. DOI: 10.1016/j.jlumin.2017.12.060
  61. Bansal, N., Mohanta, G.C., Singh, K. (2017). Effect of Mn2+ and Cu2+ co-doping on structural and luminescent properties of ZnS nanoparticles. Ceramics International, 43(9), 7193–7201. DOI: 10.1016/j.ceramint.2017.03.007
  62. Kuzmin, A., Dile, M., Laganovska, K., Zolotarjovs, A. (2022). Microwave-assisted synthesis and characterization of undoped and manganese doped zinc sulfide nanoparticles. Materials Chemistry and Physics, 290, 126583. DOI: 10.1016/j.matchemphys.2022.126583
  63. Murugadoss, G. (2011). Synthesis, optical, structural and thermal characterization of Mn2+ doped ZnS nanoparticles using reverse micelle method. Journal of Luminescence, 131(10), 2216–2223. DOI: 10.1016/j.jlumin.2011.03.048
  64. Qiao, F., Kang, R., Liang, Q., Cai, Y., Bian, J., Hou, X. (2019). Tunability in the Optical and Electronic Properties of ZnSe Microspheres via Ag and Mn Doping. ACS Omega, 4(7), 12271–12277. DOI: 10.1021/acsomega.9b01539
  65. Wang, Y., Cheng, J., Yu, S., Alcocer, E.J., Shahid, M., Wang, Z., Pan, W. (2016). Synergistic effect of N-decorated and Mn2+ doped ZnO nanofibers with enhanced photocatalytic activity. Scientific Reports, 6(1), 32711. DOI: 10.1038/srep32711
  66. Li, C., Zhang, H., Cheng, C. (2016). CdS/CdSe co-sensitized 3D SnO2/TiO2 sea urchin-like nanotube arrays as an efficient photoanode for photoelectrochemical hydrogen generation. RSC Advances, 6(44), 37407–37411. DOI: 10.1039/C6RA02176J
  67. Singh, A., Geaney, H., Laffir, F., Ryan, K.M. (2012). Colloidal Synthesis of Wurtzite Cu2 ZnSnS4 Nanorods and Their Perpendicular Assembly. Journal of the American Chemical Society, 134(6), 2910–2913. DOI: 10.1021/ja2112146
  68. Xu, H.Y., Liu, Y.C., Xu, C.S., Liu, Y.X., Shao, C.L., Mu, R. (2006). Room-temperature ferromagnetism in (Mn, N)-codoped ZnO thin films prepared by reactive magnetron cosputtering. Applied Physics Letters, 88(24) DOI: 10.1063/1.2213929

Last update:

No citation recorded.

Last update:

No citation recorded.