skip to main content

Nanostructured Ni-B Seed Layer Electrocatalysts for Oxygen Evolution Reaction

Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Iran, Islamic Republic of

Received: 14 May 2025; Revised: 3 Jul 2025; Accepted: 7 Jul 2025; Available online: 30 Jul 2025; Published: 30 Oct 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

The current study investigates the electrocatalytic activity of the nanostructured Ni-B seed layer deposited on carbon paper for the oxygen evolution reaction. Accordingly, the influence of several fabrication parameters and post-heat treatment on the electrocatalytic behavior of the samples is studied. Nanostructure seed Ni-B/CP electrodes were synthesized by an electroless deposition method, and a uniform layer of nanostructure seeds was obtained after 120 s of deposition time. Results have shown by the rising B content the catalytic properties of the Ni-B/CP electrodes are enhanced. The catalytic activity for OER diminished after heat treatment at 400 ºC for 1 h. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Nanostructured Ni-B layer; electroless; electrocatalysts; oxygen evolution reaction (OER)
Funding: Iran National Science Foundation (INSF) under contract 99022418

Article Metrics:

  1. Madhumitha, A., Preethi, V., Kanmani, S. (2018). Photocatalytic hydrogen production using TiO2 coated iron-oxide core shell particles. International Journal of Hydrogen Energy, 43(8), 3946-3956. DOI: 10.1016/j.ijhydene.2017.12.127
  2. McCrory, C.C., Jung, S., Ferrer, I.M., Chatman, S.M., Peters, J.C., Jaramillo, T.F. (2015). Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc., 137(13), 4347-4357. DOI: 10.1021/ja510442p
  3. Ghorbanzadeh, S., Hosseini, S.A., Alishahi, M. (2022). CuCo2O4/Ti3C2Tx MXene hybrid electrocatalysts for oxygen evolution reaction of water splitting. Journal of Alloys and Compounds, 920, 165811. DOI: 10.1016/j.jallcom.2022.165811
  4. Ghorbanzadeh, S.H., Taghdiri, S.A., Alishahi, A. M. (2022). Water oxidation electrocatalyst: A new application area for Ruthner powder waste material. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 61(4), 336-346. DOI: 10.1016/j.bsecv.2021.01.002
  5. Masa, J., Weide, P., Peeters, D., Sinev, I., Xia, W., Sun, Z., Somsen, C., Muhler, M., Schuhmann, W. (2016). Amorphous cobalt boride (Co2B) as a highly efficient nonprecious catalyst for electrochemical water splitting: oxygen and hydrogen evolution. Advanced Energy Materials, 6(6), 1502313. DOI: 10.1002/aenm.201502313
  6. Sun, M., Liu, H.J., Qu, J.H., Li, J.H. (2016). Earth-Rich Transition Metal Phosphide for Energy Conversion and Storage. Advanced Energy Materials, 6(13), 1600087. DOI: 10.1002/aenm.201600087
  7. Riedel, W., Electroless Nickel Plating, ASM International, Metals Park Ohio. 1991, USA/Fnishing Publications Ltd., Stevenage, Hertfordshire, England
  8. Srinivasan, K.N., Meenakshi, R., Santhi, A., Thangavelu, P.R., John, S. (2010). Studies on development of electroless Ni-B bath for corrosion resistance and wear resistance applications. Surface Engineering, 26(3), 153-158. DOI: 10.1179/174329409x409468
  9. Zeng, M., Wang, H., Zhao, C., Wei, J., Qi, K., Wang, W., Bai, X. (2016). Nanostructured Amorphous Nickel Boride for High-Efficiency Electrocatalytic Hydrogen Evolution over a Broad pH Range. ChemCatChem, 8(4), 708-712. DOI: 10.1002/cctc.201501221
  10. Sheng, M., Wu, Q., Wang, Y., Liao, F., Zhou, Q., Hou, J., Weng, W. (2018). Network-like porous Co-Ni-B grown on carbon cloth as efficient and stable catalytic electrodes for hydrogen evolution. Electrochemistry Communications, 93, 104-108. DOI: 10.1016/j.elecom.2018.06.017
  11. Huang, T., Shen, T., Gong, M., Deng, S., Lai, C., Liu, X., Zhao, T., Teng, L., Wang, D. (2019). Ultrafine Ni-B nanoparticles for efficient hydrogen evolution reaction. Chinese Journal of Catalysis, 40(12), 1867-1873. DOI: 10.1016/S1872-2067(19)63331-0
  12. Zhang, P., Wang, M., Yang, Y., Yao, T., Han, H., Sun, L. (2016). Electroless plated Ni-B films as highly active electrocatalysts for hydrogen production from water over a wide pH range. Nano Energy, 19, 98-107. DOI: 10.1016/j.nanoen.2015.11.020
  13. Edison, T.N.J.I., Atchudan, R., Karthik, N., Sethuraman, M.G., Lee, Y.R. (2017). Ultrasonic synthesis, characterization and energy applications of Ni-B alloy nanorods. Journal of the Taiwan Institute of Chemical Engineers, 80, 901-907. DOI: 10.1016/j.jtice.2017.07.034
  14. Liang, Y.H., X.P. Sun, A.M. Asiri, and Y.Q. He. (2016). Amorphous Ni-B alloy nanoparticle film on Ni foam: rapid alternately dipping deposition for efficient overall water splitting. Nanotechnology, 27(12), 12LT01. DOI: 10.1088/0957-4484/27/12/12lt01
  15. Masa, J., Piontek, S., Wilde, P., Antoni, H., Eckhard, T., Chen, Y.T., Muhler, M., Apfel, U.F., Schuhmann, W. (2019). Ni-Metalloid (B, Si, P, As, and Te) Alloys as Water Oxidation Electrocatalysts. Advanced Energy Materials, 9(26), 1900796. DOI: 10.1002/aenm.201900796
  16. Yilmaz, Y., Akbulut, H., Uysal, M. (2022). Effect of NaBH4 concentration on hardness and microstructural properties of electroless deposited St-37 steel. [Effect of NaBH4 concentration on hardness and microstructural properties of electroless deposited St-37 steel]. European Journal of Science and Technology, 39, 118-121. DOI: 10.31590/ejosat.1140395
  17. Yunacti, M., Mégret, A., Staia, MH., A Montagne, A., Vitry, V. (2021). Characterization of Electroless Nickel-Boron Deposit from Optimized Stabilizer-Free Bath. Coatings, 11(5), 576. DOI: 10.3390/coatings11050576
  18. Delaunois, F., Lienard, P. (2002). Heat treatments for electroless nickel-boron plating on aluminium alloys. Surface & Coatings Technology, 160(2-3), 239-248. DOI: 10.1016/S0257-8972(02)00415-2
  19. Rao, Q., Bi, G., Lu, Q., Wang, H., Fan, X. (2005). Microstructure evolution of electroless Ni-B film during its depositing process. Applied Surface Science, 240(1-4), 28-33. DOI: 10.1016/j.apsusc.2004.07.059
  20. Okamoto, H., Massalski, T. (1990). Binary alloy phase diagrams. ASM International, Materials Park, Ohio, USA. December 1990. xxii, 3589 pp., 3 vol., the set. Adv. Mater., 3: 628-629. DOI: 10.1002/adma.19910031215
  21. Tucker, R. (2013). ASM handbook, volume 5A: thermal spray technology. Plastics Industry, 335, 336. DOI: 10.31399/asm.hb.v05a.9781627081719
  22. Chatti, M., Gardiner, J.L., Fournier, M., Johannessen, B., Williams, T., Gengenbach, T.R., Pai, N., Nguyen, C., MacFarlane, D.R., Hocking, R.K., Simonov, A.N. (2019). Intrinsically stable in situ generated electrocatalyst for long-term oxidation of acidic water at up to 80 C. Nature Catalysis, 2(5), 457-465. DOI: 10.1038/s41929-019-0277-8
  23. Liang, Q.H., Brocks, G., Bieberle-Hutter, A. (2021). Oxygen evolution reaction (OER) mechanism under alkaline and acidic conditions. Journal of Physics-Energy, 3(2), 026001. DOI: 10.1088/2515-7655/abdc85
  24. O'M, B. (1956). Kinetics of Activation Controlled Consecutive Electrochemical Reactions: Anodic Evolution of Oxygen. Journal of Chemical Physics, 24, 817-827. DOI: 10.1063/1.1742616
  25. Suen, N.T., Hung, S.F., Quan, Q., Zhang, N., Xu, Y.J., Chen, H.M. (2017). Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev., 46(2), 337-365. DOI: 10.1039/c6cs00328a
  26. Sun, K., Wang, K., Yu, T., Liu, X., Wang, G., Jiang, L., Bu, Y., Xie, G. (2019). High-performance FeCoP alloy catalysts by electroless deposition for overall water splitting. International Journal of Hydrogen Energy, 44(3), 1328-1335. DOI: 10.1016/j.ijhydene.2018.11.182
  27. Anantharaj, S., Chatterjee, S., Swaathini, K.C., Amarnath, T.S., Subhashini, E., Pattanayak, D.K., Kundu, S. (2018). Stainless Steel Scrubber: A Cost-Efficient Catalytic Electrode for Full Water Splitting in Alkaline Medium. ACS Sustainable Chemistry & Engineering, 6(2), 2498-2509. DOI: 10.1021/acssuschemeng.7b03964
  28. Anantharaj, S., Venkatesh, M., Salunke, A.S., Simha, T.V.S.V., Prabu, V., Kundu, S. (2017). High-Performance Oxygen Evolution Anode from Stainless Steel via Controlled Surface Oxidation and Cr Removal. ACS Sustainable Chemistry & Engineering, 5(11), 10072-10083. DOI: 10.1021/acssuschemeng.7b02090
  29. Sheng, M.Q., Weng, W., Wang, Y., Wu, Q., Hou, S. (2018). Co-W/CeO composite coatings for highly active electrocatalysis of hydrogen evolution reaction. Journal of Alloys and Compounds, 743, 682-690. DOI: 10.1016/j.jallcom.2018.01.356
  30. Laszczyńska, A., Szczygieł, I. (2020). Electrocatalytic activity for the hydrogen evolution of the electrodeposited Co–Ni–Mo, Co–Ni and Co–Mo alloy coatings. International Journal of Hydrogen Energy, 45(1), 508-520. DOI: 10.1016/j.ijhydene.2019.10.181
  31. Masa, J., Sinev, I., Mistry, H., Ventosa, E., Mata, M.D.L., Arbiol, J., Muhler, M., Roldan Cuenya, B., Schuhmann, W. (2017). Ultrathin High Surface Area Nickel Boride (NiB) Nanosheets as Highly Efficient Electrocatalyst for Oxygen Evolution. Advanced Energy Materials, 7(17), 1700381. DOI: 10.1002/aenm.201700381
  32. Tang, W., Liu, X., Li, Y., Pu, Y., Lu, Y., Song, Z., Wang, Q., Yu, R., Shui, J. (2020). Boosting electrocatalytic water splitting via metal-metalloid combined modulation in quaternary Ni-Fe-PB amorphous compound. Nano Research, 13, 447-454. DOI: 10.1007/s12274-020-2627-x
  33. Liu, G., He, D., Yao, R., Zhao, Y., Li, J. (2018). Amorphous NiFeB nanoparticles realizing highly active and stable oxygen evolving reaction for water splitting. Nano Research, 11(3), 1664-1675. DOI: 10.1007/s12274-017-1783-0
  34. Lao, J., Li, D., Jiang, C., Luo, R., Peng, H., Qi, R., Lin, H., Huang, R., Gin, W., Luo, C. (2020). Efficient overall water splitting using nickel boride-based electrocatalysts. International Journal of Hydrogen Energy, 45(53), 28616-28625. DOI: 10.1016/j.ijhydene.2020.07.171
  35. Sun, M., Liu, H.J., Qu, J.H., Li, J.H. (2016). Earth-Rich Transition Metal Phosphide for Energy Conversion and Storage. Advanced Energy Materials, 6(13), 1600087. DOI: 10.1002/aenm.201600087
  36. Riedel, W., Electroless Nickel Plating, ASM International, Metals Park Ohio. 1991, USA/Fnishing Publications Ltd., Stevenage, Hertfordshire, England
  37. Srinivasan, K.N., Meenakshi, R., Santhi, A., Thangavelu, P.R., John, S. (2010). Studies on development of electroless Ni-B bath for corrosion resistance and wear resistance applications. Surface Engineering, 26(3), 153-158. DOI: 10.1179/174329409x409468
  38. Zeng, M., Wang, H., Zhao, C., Wei, J., Qi, K., Wang, W., Bai, X. (2016). Nanostructured Amorphous Nickel Boride for High-Efficiency Electrocatalytic Hydrogen Evolution over a Broad pH Range. ChemCatChem, 8(4), 708-712. DOI: 10.1002/cctc.201501221
  39. Sheng, M., Wu, Q., Wang, Y., Liao, F., Zhou, Q., Hou, J., Weng, W. (2018). Network-like porous Co-Ni-B grown on carbon cloth as efficient and stable catalytic electrodes for hydrogen evolution. Electrochemistry Communications, 93, 104-108. DOI: 10.1016/j.elecom.2018.06.017
  40. Huang, T., Shen, T., Gong, M., Deng, S., Lai, C., Liu, X., Zhao, T., Teng, L., Wang, D. (2019). Ultrafine Ni-B nanoparticles for efficient hydrogen evolution reaction. Chinese Journal of Catalysis, 40(12), 1867-1873. DOI: 10.1016/S1872-2067(19)63331-0
  41. Zhang, P., Wang, M., Yang, Y., Yao, T., Han, H., Sun, L. (2016). Electroless plated Ni-B films as highly active electrocatalysts for hydrogen production from water over a wide pH range. Nano Energy, 19, 98-107. DOI: 10.1016/j.nanoen.2015.11.020
  42. Edison, T.N.J.I., Atchudan, R., Karthik, N., Sethuraman, M.G., Lee, Y.R. (2017). Ultrasonic synthesis, characterization and energy applications of Ni-B alloy nanorods. Journal of the Taiwan Institute of Chemical Engineers, 80, 901-907. DOI: 10.1016/j.jtice.2017.07.034
  43. Liang, Y.H., X.P. Sun, A.M. Asiri, and Y.Q. He. (2016). Amorphous Ni-B alloy nanoparticle film on Ni foam: rapid alternately dipping deposition for efficient overall water splitting. Nanotechnology, 27(12), 12LT01. DOI: 10.1088/0957-4484/27/12/12lt01
  44. Masa, J., Piontek, S., Wilde, P., Antoni, H., Eckhard, T., Chen, Y.T., Muhler, M., Apfel, U.F., Schuhmann, W. (2019). Ni-Metalloid (B, Si, P, As, and Te) Alloys as Water Oxidation Electrocatalysts. Advanced Energy Materials, 9(26), 1900796. DOI: 10.1002/aenm.201900796
  45. Yilmaz, Y., Akbulut, H., Uysal, M. (2022). Effect of NaBH4 concentration on hardness and microstructural properties of electroless deposited St-37 steel. [Effect of NaBH4 concentration on hardness and microstructural properties of electroless deposited St-37 steel]. European Journal of Science and Technology, 39, 118-121. DOI: 10.31590/ejosat.1140395
  46. Yunacti, M., Mégret, A., Staia, MH., A Montagne, A., Vitry, V. (2021). Characterization of Electroless Nickel-Boron Deposit from Optimized Stabilizer-Free Bath. Coatings, 11(5), 576. DOI: 10.3390/coatings11050576
  47. Delaunois, F., Lienard, P. (2002). Heat treatments for electroless nickel-boron plating on aluminium alloys. Surface & Coatings Technology, 160(2-3), 239-248. DOI: 10.1016/S0257-8972(02)00415-2
  48. Rao, Q., Bi, G., Lu, Q., Wang, H., Fan, X. (2005). Microstructure evolution of electroless Ni-B film during its depositing process. Applied Surface Science, 240(1-4), 28-33. DOI: 10.1016/j.apsusc.2004.07.059
  49. Okamoto, H., Massalski, T. (1990). Binary alloy phase diagrams. ASM International, Materials Park, Ohio, USA. December 1990. xxii, 3589 pp., 3 vol., the set. Adv. Mater., 3: 628-629. DOI: 10.1002/adma.19910031215
  50. Tucker, R. (2013). ASM handbook, volume 5A: thermal spray technology. Plastics Industry, 335, 336. DOI: 10.31399/asm.hb.v05a.9781627081719
  51. Chatti, M., Gardiner, J.L., Fournier, M., Johannessen, B., Williams, T., Gengenbach, T.R., Pai, N., Nguyen, C., MacFarlane, D.R., Hocking, R.K., Simonov, A.N. (2019). Intrinsically stable in situ generated electrocatalyst for long-term oxidation of acidic water at up to 80 C. Nature Catalysis, 2(5), 457-465. DOI: 10.1038/s41929-019-0277-8
  52. Liang, Q.H., Brocks, G., Bieberle-Hutter, A. (2021). Oxygen evolution reaction (OER) mechanism under alkaline and acidic conditions. Journal of Physics-Energy, 3(2), 026001. DOI: 10.1088/2515-7655/abdc85
  53. O'M, B. (1956). Kinetics of Activation Controlled Consecutive Electrochemical Reactions: Anodic Evolution of Oxygen. Journal of Chemical Physics, 24, 817-827. DOI: 10.1063/1.1742616
  54. Suen, N.T., Hung, S.F., Quan, Q., Zhang, N., Xu, Y.J., Chen, H.M. (2017). Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev., 46(2), 337-365. DOI: 10.1039/c6cs00328a
  55. Sun, K., Wang, K., Yu, T., Liu, X., Wang, G., Jiang, L., Bu, Y., Xie, G. (2019). High-performance FeCoP alloy catalysts by electroless deposition for overall water splitting. International Journal of Hydrogen Energy, 44(3), 1328-1335. DOI: 10.1016/j.ijhydene.2018.11.182
  56. Anantharaj, S., Chatterjee, S., Swaathini, K.C., Amarnath, T.S., Subhashini, E., Pattanayak, D.K., Kundu, S. (2018). Stainless Steel Scrubber: A Cost-Efficient Catalytic Electrode for Full Water Splitting in Alkaline Medium. ACS Sustainable Chemistry & Engineering, 6(2), 2498-2509. DOI: 10.1021/acssuschemeng.7b03964
  57. Anantharaj, S., Venkatesh, M., Salunke, A.S., Simha, T.V.S.V., Prabu, V., Kundu, S. (2017). High-Performance Oxygen Evolution Anode from Stainless Steel via Controlled Surface Oxidation and Cr Removal. ACS Sustainable Chemistry & Engineering, 5(11), 10072-10083. DOI: 10.1021/acssuschemeng.7b02090
  58. Sheng, M.Q., Weng, W., Wang, Y., Wu, Q., Hou, S. (2018). Co-W/CeO composite coatings for highly active electrocatalysis of hydrogen evolution reaction. Journal of Alloys and Compounds, 743, 682-690. DOI: 10.1016/j.jallcom.2018.01.356
  59. Laszczyńska, A., Szczygieł, I. (2020). Electrocatalytic activity for the hydrogen evolution of the electrodeposited Co–Ni–Mo, Co–Ni and Co–Mo alloy coatings. International Journal of Hydrogen Energy, 45(1), 508-520. DOI: 10.1016/j.ijhydene.2019.10.181
  60. Masa, J., Sinev, I., Mistry, H., Ventosa, E., Mata, M.D.L., Arbiol, J., Muhler, M., Roldan Cuenya, B., Schuhmann, W. (2017). Ultrathin High Surface Area Nickel Boride (NiB) Nanosheets as Highly Efficient Electrocatalyst for Oxygen Evolution. Advanced Energy Materials, 7(17), 1700381. DOI: 10.1002/aenm.201700381
  61. Madhumitha, A., Preethi, V., Kanmani, S. (2018). Photocatalytic hydrogen production using TiO2 coated iron-oxide core shell particles. International Journal of Hydrogen Energy, 43(8), 3946-3956. DOI: 10.1016/j.ijhydene.2017.12.127
  62. McCrory, C.C., Jung, S., Ferrer, I.M., Chatman, S.M., Peters, J.C., Jaramillo, T.F. (2015). Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc., 137(13), 4347-4357. DOI: 10.1021/ja510442p
  63. Ghorbanzadeh, S., Hosseini, S.A., Alishahi, M. (2022). CuCo2O4/Ti3C2Tx MXene hybrid electrocatalysts for oxygen evolution reaction of water splitting. Journal of Alloys and Compounds, 920, 165811. DOI: 10.1016/j.jallcom.2022.165811
  64. Ghorbanzadeh, S.H., Taghdiri, S.A., Alishahi, A. M. (2022). Water oxidation electrocatalyst: A new application area for Ruthner powder waste material. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 61(4), 336-346. DOI: 10.1016/j.bsecv.2021.01.002
  65. Masa, J., Weide, P., Peeters, D., Sinev, I., Xia, W., Sun, Z., Somsen, C., Muhler, M., Schuhmann, W. (2016). Amorphous cobalt boride (Co2B) as a highly efficient nonprecious catalyst for electrochemical water splitting: oxygen and hydrogen evolution. Advanced Energy Materials, 6(6), 1502313. DOI: 10.1002/aenm.201502313
  66. Sun, M., Liu, H.J., Qu, J.H., Li, J.H. (2016). Earth-Rich Transition Metal Phosphide for Energy Conversion and Storage. Advanced Energy Materials, 6(13), 1600087. DOI: 10.1002/aenm.201600087
  67. Riedel, W., Electroless Nickel Plating, ASM International, Metals Park Ohio. 1991, USA/Fnishing Publications Ltd., Stevenage, Hertfordshire, England
  68. Srinivasan, K.N., Meenakshi, R., Santhi, A., Thangavelu, P.R., John, S. (2010). Studies on development of electroless Ni-B bath for corrosion resistance and wear resistance applications. Surface Engineering, 26(3), 153-158. DOI: 10.1179/174329409x409468
  69. Zeng, M., Wang, H., Zhao, C., Wei, J., Qi, K., Wang, W., Bai, X. (2016). Nanostructured Amorphous Nickel Boride for High-Efficiency Electrocatalytic Hydrogen Evolution over a Broad pH Range. ChemCatChem, 8(4), 708-712. DOI: 10.1002/cctc.201501221
  70. Sheng, M., Wu, Q., Wang, Y., Liao, F., Zhou, Q., Hou, J., Weng, W. (2018). Network-like porous Co-Ni-B grown on carbon cloth as efficient and stable catalytic electrodes for hydrogen evolution. Electrochemistry Communications, 93, 104-108. DOI: 10.1016/j.elecom.2018.06.017
  71. Huang, T., Shen, T., Gong, M., Deng, S., Lai, C., Liu, X., Zhao, T., Teng, L., Wang, D. (2019). Ultrafine Ni-B nanoparticles for efficient hydrogen evolution reaction. Chinese Journal of Catalysis, 40(12), 1867-1873. DOI: 10.1016/S1872-2067(19)63331-0
  72. Zhang, P., Wang, M., Yang, Y., Yao, T., Han, H., Sun, L. (2016). Electroless plated Ni-B films as highly active electrocatalysts for hydrogen production from water over a wide pH range. Nano Energy, 19, 98-107. DOI: 10.1016/j.nanoen.2015.11.020
  73. Edison, T.N.J.I., Atchudan, R., Karthik, N., Sethuraman, M.G., Lee, Y.R. (2017). Ultrasonic synthesis, characterization and energy applications of Ni-B alloy nanorods. Journal of the Taiwan Institute of Chemical Engineers, 80, 901-907. DOI: 10.1016/j.jtice.2017.07.034
  74. Liang, Y.H., X.P. Sun, A.M. Asiri, and Y.Q. He. (2016). Amorphous Ni-B alloy nanoparticle film on Ni foam: rapid alternately dipping deposition for efficient overall water splitting. Nanotechnology, 27(12), 12LT01. DOI: 10.1088/0957-4484/27/12/12lt01
  75. Masa, J., Piontek, S., Wilde, P., Antoni, H., Eckhard, T., Chen, Y.T., Muhler, M., Apfel, U.F., Schuhmann, W. (2019). Ni-Metalloid (B, Si, P, As, and Te) Alloys as Water Oxidation Electrocatalysts. Advanced Energy Materials, 9(26), 1900796. DOI: 10.1002/aenm.201900796
  76. Yilmaz, Y., Akbulut, H., Uysal, M. (2022). Effect of NaBH4 concentration on hardness and microstructural properties of electroless deposited St-37 steel. [Effect of NaBH4 concentration on hardness and microstructural properties of electroless deposited St-37 steel]. European Journal of Science and Technology, 39, 118-121. DOI: 10.31590/ejosat.1140395
  77. Yunacti, M., Mégret, A., Staia, MH., A Montagne, A., Vitry, V. (2021). Characterization of Electroless Nickel-Boron Deposit from Optimized Stabilizer-Free Bath. Coatings, 11(5), 576. DOI: 10.3390/coatings11050576
  78. Delaunois, F., Lienard, P. (2002). Heat treatments for electroless nickel-boron plating on aluminium alloys. Surface & Coatings Technology, 160(2-3), 239-248. DOI: 10.1016/S0257-8972(02)00415-2
  79. Rao, Q., Bi, G., Lu, Q., Wang, H., Fan, X. (2005). Microstructure evolution of electroless Ni-B film during its depositing process. Applied Surface Science, 240(1-4), 28-33. DOI: 10.1016/j.apsusc.2004.07.059
  80. Okamoto, H., Massalski, T. (1990). Binary alloy phase diagrams. ASM International, Materials Park, Ohio, USA. December 1990. xxii, 3589 pp., 3 vol., the set. Adv. Mater., 3: 628-629. DOI: 10.1002/adma.19910031215
  81. Tucker, R. (2013). ASM handbook, volume 5A: thermal spray technology. Plastics Industry, 335, 336. DOI: 10.31399/asm.hb.v05a.9781627081719
  82. Chatti, M., Gardiner, J.L., Fournier, M., Johannessen, B., Williams, T., Gengenbach, T.R., Pai, N., Nguyen, C., MacFarlane, D.R., Hocking, R.K., Simonov, A.N. (2019). Intrinsically stable in situ generated electrocatalyst for long-term oxidation of acidic water at up to 80 C. Nature Catalysis, 2(5), 457-465. DOI: 10.1038/s41929-019-0277-8
  83. Liang, Q.H., Brocks, G., Bieberle-Hutter, A. (2021). Oxygen evolution reaction (OER) mechanism under alkaline and acidic conditions. Journal of Physics-Energy, 3(2), 026001. DOI: 10.1088/2515-7655/abdc85
  84. O'M, B. (1956). Kinetics of Activation Controlled Consecutive Electrochemical Reactions: Anodic Evolution of Oxygen. Journal of Chemical Physics, 24, 817-827. DOI: 10.1063/1.1742616
  85. Suen, N.T., Hung, S.F., Quan, Q., Zhang, N., Xu, Y.J., Chen, H.M. (2017). Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev., 46(2), 337-365. DOI: 10.1039/c6cs00328a
  86. Sun, K., Wang, K., Yu, T., Liu, X., Wang, G., Jiang, L., Bu, Y., Xie, G. (2019). High-performance FeCoP alloy catalysts by electroless deposition for overall water splitting. International Journal of Hydrogen Energy, 44(3), 1328-1335. DOI: 10.1016/j.ijhydene.2018.11.182
  87. Anantharaj, S., Chatterjee, S., Swaathini, K.C., Amarnath, T.S., Subhashini, E., Pattanayak, D.K., Kundu, S. (2018). Stainless Steel Scrubber: A Cost-Efficient Catalytic Electrode for Full Water Splitting in Alkaline Medium. ACS Sustainable Chemistry & Engineering, 6(2), 2498-2509. DOI: 10.1021/acssuschemeng.7b03964
  88. Anantharaj, S., Venkatesh, M., Salunke, A.S., Simha, T.V.S.V., Prabu, V., Kundu, S. (2017). High-Performance Oxygen Evolution Anode from Stainless Steel via Controlled Surface Oxidation and Cr Removal. ACS Sustainable Chemistry & Engineering, 5(11), 10072-10083. DOI: 10.1021/acssuschemeng.7b02090
  89. Sheng, M.Q., Weng, W., Wang, Y., Wu, Q., Hou, S. (2018). Co-W/CeO composite coatings for highly active electrocatalysis of hydrogen evolution reaction. Journal of Alloys and Compounds, 743, 682-690. DOI: 10.1016/j.jallcom.2018.01.356
  90. Laszczyńska, A., Szczygieł, I. (2020). Electrocatalytic activity for the hydrogen evolution of the electrodeposited Co–Ni–Mo, Co–Ni and Co–Mo alloy coatings. International Journal of Hydrogen Energy, 45(1), 508-520. DOI: 10.1016/j.ijhydene.2019.10.181
  91. Masa, J., Sinev, I., Mistry, H., Ventosa, E., Mata, M.D.L., Arbiol, J., Muhler, M., Roldan Cuenya, B., Schuhmann, W. (2017). Ultrathin High Surface Area Nickel Boride (NiB) Nanosheets as Highly Efficient Electrocatalyst for Oxygen Evolution. Advanced Energy Materials, 7(17), 1700381. DOI: 10.1002/aenm.201700381
  92. Tang, W., Liu, X., Li, Y., Pu, Y., Lu, Y., Song, Z., Wang, Q., Yu, R., Shui, J. (2020). Boosting electrocatalytic water splitting via metal-metalloid combined modulation in quaternary Ni-Fe-PB amorphous compound. Nano Research, 13, 447-454. DOI: 10.1007/s12274-020-2627-x
  93. Liu, G., He, D., Yao, R., Zhao, Y., Li, J. (2018). Amorphous NiFeB nanoparticles realizing highly active and stable oxygen evolving reaction for water splitting. Nano Research, 11(3), 1664-1675. DOI: 10.1007/s12274-017-1783-0
  94. Lao, J., Li, D., Jiang, C., Luo, R., Peng, H., Qi, R., Lin, H., Huang, R., Gin, W., Luo, C. (2020). Efficient overall water splitting using nickel boride-based electrocatalysts. International Journal of Hydrogen Energy, 45(53), 28616-28625. DOI: 10.1016/j.ijhydene.2020.07.171

Last update:

No citation recorded.

Last update:

No citation recorded.