skip to main content

Enhancement of Charge Transfer in Quantum Dot–sensitized Solar Cell Photoanodes by Supporting rGO Layers

1Faculty of Fundamental Science, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Viet Nam

2Faculty of Basic Sciences, Vinh Long University of Technology Education, Vinh Long City, Viet Nam

3Faculty of Physics and Engineering Physics, VNUHCM-University of Science, Hochiminh City, Viet Nam

4 Vietnam National University Hochiminh City, Hochiminh City, Viet Nam

5 Faculty of Electrical & Electronics Engineering, Vinh Long University of Technology Education, Vinh Long Province, Viet Nam

6 Department of Chemistry, Faculty of Basic Sciences, Can Tho University of Medicine and Pharmacy, Can Tho 94000, Viet Nam

View all affiliations
Received: 10 Mar 2025; Revised: 17 Sep 2025; Accepted: 18 Sep 2025; Available online: 24 Sep 2025; Published: 26 Dec 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

In this study, we have studied and fabricated quantum dot sensitized solar cells based on photoanodes with the support of rGO buffer layer to enhance the electron transfer ability from TiO2 nano-semiconductor to FTO substrate. The rGO materials were fabricated by hydrothermal method, then they were coated on FTO substrate by Screen - Printing technique to create rGO nano films. The thickness of rGO films was studied from 1 to 3 layers to evaluate the mobility of charge, reduce recombination and resistance of film. Experimental results were determined by structural properties using XRD, FTIR, EDX and XPS, FESEM spectra; determined optical properties using UV-Vis absorption and transmission spectra; determined optical, electrical and chemical properties using Nyquist and EIS spectra. The maximum measured efficiency was 5.23% for the FTO/rGO(2)/TiO2/QDs film, current density 21.34 mA/cm2, open circuit voltage 5.525V and fill factor of 0.34. These results were also proven through the research results of optical properties, electrochemical properties. In addition, these results are also consistent with the studies of others. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: rGO nanofilms; quantum dots; solar cells; charge transfer

Article Metrics:

  1. Zaban, A., Mićić, O.I., Gregg, B.A., Nozik, A.J. (1998). Photosensitization of nanoporous TiO₂ electrodes with InP quantum dots. Langmuir, 14(12), 3153–3156. DOI: 10.1021/la9713863
  2. Yu, P., Zhu, K., Norman, A., Ferrere, S., Frank, A., Nozik, A. (2006). Nanocrystalline TiO₂ solar cells sensitized with InAs quantum dots. Journal of Physical Chemistry B, 110(50), 25451–25454. DOI: 10.1021/jp064817b
  3. Yu, W.W., Qu, L., Guo, W., Peng, X. (2003). Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chemistry of Materials, 15(14), 2854–2860. DOI: 10.1021/cm034081k
  4. Beard, M.C. (2011). Multiple exciton generation in semiconductor quantum dots. Journal of Physical Chemistry Letters, 2(11), 1282–1288. DOI: 10.1021/jz200166y
  5. Fang, J., Wu, J., Lu, X., Shen, Y., Lu, Z. (1997). Sensitization of nanocrystalline TiO₂ electrode with quantum‐sized CdSe and ZnTCPc molecules. Chemistry Letters, 270(1-2), 145–151. DOI: 10.1016/S0009-2614(97)00333-3
  6. Lee, W., Kwak, W.-C., Min, S.-K.; Lee, J.-C.; Chae, W.-S.; Sung, Y.-M.; Han, S.-H. (2008). Spectral broadening in quantum dots-sensitized photoelectrochemical solar cells based on CdSe and Mg-doped CdSe nanocrystals. Electrochemistry Communications, 10(11), 1699-1702. DOI: 10.1016/j.elecom.2008.08.025
  7. Liu, D., Kamat, P.V. (1993). Photoelectrochemical behavior of thin cadmium selenide and coupled TiO₂/CdSe semiconductor films. The Journal of Physical Chemistry, 97(41), 10769-10773. DOI: 10.1021/j100143a041
  8. Peter, L.M., Riley, D.J., Tull, E.J., Wijayantha, K.G.U. (2002). Photosensitization of nanocrystalline TiO₂ by self-assembled layers of CdS quantum dots. Chemical Communications, (10), 1030-1031. DOI: 10.1039/B201661C
  9. Vogel, R., Pohl, K., Weller, H. (1990). Sensitization of highly porous, polycrystalline TiO₂ electrodes by quantum-sized CdS. Chemical Physics Letters, 174(3-4), 241-246. DOI: 10.1016/0009-2614(90)85339-E
  10. Mora-Seró, I., Giménez, S., Moehl, T., Fabregat-Santiago, F., Lana-Villareal, T., Gómez, R., Bisquert, J. (2008). Factors determining the photovoltaic performance of a CdSe quantum dot sensitized solar cell: the role of the linker molecule and of the counter electrode. Nanotechnology, 19(42), 424007. DOI: 10.1088/0957-4484/19/42/424007
  11. Shen, Y.-J., Lee, Y.-L. (2008). Assembly of CdS quantum dots onto mesoscopic TiO₂ films for quantum dot-sensitized solar cell applications. Nanotechnology, 19(4), 045602. DOI: 10.1088/0957-4484/19/04/045602
  12. Lee, Y.-L.; Lo, Y.-S. (2009). Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe. Advanced Functional Materials, 19(4), 604-609. DOI: 10.1002/adfm.200800940
  13. Zhang, Q., Zhang, Y., Huang, S., Huang, X., Luo, Y., Meng, Q., Li, D. (2010). Application of carbon counterelectrode on CdS quantum dot-sensitized solar cells (QDSSCs). Electrochemistry Communications, 12(2), 327-330. DOI: 10.1016/j.elecom.2009.12.032
  14. Sudhagar, P., Jung, J.-H., Park, S., Lee, Y.-G., Sathyamoorthy, R., Kang, Y.-S., Ahn, H. (2009). The performance of coupled (CdS:CdSe) quantum dot-sensitized TiO₂ nanofibrous solar cells. Electrochemistry Communications, 11(11), 2220-2224. DOI: 10.1016/j.elecom.2009.09.035
  15. Yu, Z., Zhang, Q., Qin, D., Luo, Y., Li, D., Shen, Q., Toyoda, T., Meng, Q. (2010). Highly efficient quasi-solid-state quantum-dot-sensitized solar cell based on hydrogel electrolytes. Electrochemistry Communications, 12(12), 1776-1779. DOI: 10.1016/j.elecom.2010.10.022
  16. Wang, S., Tian, J. (2016). Recent advances in counter electrodes of quantum dot-sensitized solar cells. RSC Adv. 6(93), 90082-90099. DOI: 10.1039/C6RA19226B
  17. Kamaja, C.K., Devarapalli, R.R., Dave, Y., Debgupta, J., Shelke, M.V. (2016). Synthesis of novel Cu₂S nanohusks as high performance counter electrode for CdS/CdSe sensitized solar cell. J. Power Sources 315, 277-283. DOI: 10.1016/j.jpowsour.2016.03.027
  18. Tachan, Z., Shalom, M., Hod, I., Rühle, S., Tirosh, S., Zaban, A. (2011). PbS as a highly catalytic counter electrode for polysulfide-based quantum dot solar cells. J. Phys. Chem. C 115(13), 6162-6166. DOI: 10.1021/jp112010m
  19. Kim, H.-J., Kim, D.-J., Rao, S.S., Savariraj, A.D., Kim, S.-K., Son, M.-K., Gopi, C.V.V.M., Prabakar, K.J.E.A. (2014). Highly efficient solution processed nanorice structured NiS counter electrode for quantum dot sensitized solar cells. Electrochimica Acta, 127, 427-432. DOI: 10.1016/j.electacta.2014.02.019
  20. Chen, H., Zhu, L., Liu, H., Li, W. (2014). Efficient iron sulfide counter electrode for quantum dots-sensitized solar cells. J. Power Sources, 245, 406-410. DOI: 10.1016/j.jpowsour.2013.06.004
  21. Raj, C.J., Prabakar, K., Savariraj, A.D., Kim, H.J. (2013). Surface reinforced platinum counter electrode for quantum dots sensitized solar cells. Electrochimica Acta, 103, 231-236. DOI: 10.1016/j.electacta.2013.04.016
  22. Selopal, G.S., Zhao, H., Tong, X., Benetti, D., Navarro-Pardo, F., Zhou, Y., Barba, D., Vidal, F., Wang, Z.M., Rosei, F. (2017). Highly stable colloidal “giant” quantum dots sensitized solar cells. Advanced Functional Materials, 27(30), 1701468. DOI: 10.1002/adfm.201701468
  23. Jiao, S., Shen, Q., Mora-Seró, I., Wang, J., Pan, Z., Zhao, K., Kuga, Y., Zhong, X., Bisquert, J. (2015). Band engineering in core/shell ZnTe/CdSe for photovoltage and efficiency enhancement in exciplex quantum dot sensitized solar cells. ACS Nano, 9(1), 908-915. DOI: 10.1021/nn506638n
  24. Kim, J.-Y., Yang, J., Yu, J. H., Baek, W., Lee, C.-H., Son, H.J., Hyeon, T., Ko, M.J. (2015). Highly efficient copper–indium–selenide quantum dot solar cells: suppression of carrier recombination by controlled ZnS overlayers. ACS Nano, 9(11), 11286-11295. DOI: 10.1021/acsnano.5b04917
  25. Youn, D.H., Kim, H.-S., Kang, H.-W., Park, C.-P., Huh, S., Park, J.-H., Lee, J., Lee, J. (2013). TiN nanoparticles on CNT–Graphene hybrid support as noble-metal-free counter electrode for quantum-dot-sensitized solar cells. ChemSusChem, 6(2), 261-267. DOI: 10.1002/cssc.201200775
  26. Dao, V.-D., Choi, Y., Yong, K., Lee, J., Kim, M., Song, J. (2015). Graphene-based nanohybrid materials as the counter electrode for highly efficient quantum-dot-sensitized solar cells. Carbon, 84, 383-389. DOI: 10.1016/j.carbon.2014.12.067
  27. Bae, G., Han, S., Kim, J. Y., Jang, J.-W., Park, ., Choi, S. H., Lee, J. S. (2013). A highly efficient transition metal nitride-based electrocatalyst for oxygen reduction reaction: TiN on a CNT–graphene hybrid support. Journal of Materials Chemistry A, 1(27), 8007-8015. DOI: 10.1039/C3TA11135K
  28. Geim, A., Novoselov, K. (2010). Nanoscience and Technology: A Collection of Reviews from Nature Journals, edited by P. Rodgers. 2010, Singapore: World Scientific
  29. Roy-Mayhew, J.D., Bozym, D.J., Punckt, C., Aksay, I.A. (2010). Functionalized graphene as a catalytic counter electrode in dye-sensitized solar cells. ACS Nano, 4(10), 6203-6211. DOI: 10.1021/nn1016428
  30. Shi, M., Du, X., Zhang, Y., Ye, Z., Yang, D. (2012). Preparation of graphene–TiO₂ composite by hydrothermal method from peroxotitanium acid and its photocatalytic properties. Applied Catalysis B: Environmental, 405, 30-37. DOI: 10.1016/j.colsurfa.2012.04.031
  31. Radich, E.J., Dwyer, R., Kamat, P.V. (2011). Cu₂S Reduced Graphene Oxide Composite for High-Efficiency Quantum Dot Solar Cells: Overcoming the Redox Limitations of S²⁻/Sₙ²⁻ at the Counter Electrode. Journal of Physical Chemistry Letters, 2(19), 2453–2460. DOI: 10.1021/jz201064k
  32. Lin, J.-Y., Chan, C.-Y., Chou, S.-W. (2013). Electrophoretic Deposition of Transparent MoS₂–Graphene Nanosheet Composite Films as Counter Electrodes in Dye-Sensitized Solar Cells. Chemical Communications, 49(14), 1440–1442. DOI: 10.1039/C3CC39632G
  33. Yuan, B., Gao, Q., Zhang, X., Duan, L., Chen, L., Mao, Z., Li, X., Lü, W. (2018). Reduced Graphene Oxide (RGO)/Cu₂S Composite as Catalytic Counter Electrode for Quantum Dot-Sensitized Solar Cells. Electrochimica Acta, 277, 50–58. DOI: 10.1016/j.electacta.2018.04.218
  34. Akman, E., Altıntas, Y., Gulen, M., Yilmaz, M., Mutlugun, E., Sonmezoglu, S. (2020). Improving Performance and Stability in Quantum Dot-Sensitized Solar Cell through Single Layer Graphene/Cu₂S Nanocomposite Counter Electrode. Renewable Energy, 145, 2192–2200. DOI: 10.1016/j.renene.2019.07.163
  35. Prasad, A.K., Jo, I.R., Kang, S.H., Ahn, K.S. (2021). Novel Method for Synthesis of Reduced Graphene Oxide–Cu₂S and Its Application as a Counter Electrode in Quantum-Dot-Sensitized Solar Cells. Applied Surface Science, 564, 150393. DOI: 10.1016/j.apsusc.2021.150393
  36. Nguyen, T.P., Ha, T.T., Nguyen, T.T., Ho, N.P., Huynh, T.D.; Lam, Q.V. (2018). Effect of Cu²⁺ Ions Doped on the Photovoltaic Features of CdSe Quantum Dot Sensitized Solar Cells. Electrochimica Acta, 282(1), 16–23. DOI: 10.1016/j.electacta.2018.06.046

Last update:

No citation recorded.

Last update:

No citation recorded.