skip to main content

Heterobimetallic Zn2+/Co2+ Monocarboxylates as Precursors for ZnO Microparticles Doped with Cobalt and its Photocatalytic Activity in Methyl Orange Oxidation

Institute of Physics and Chemistry, Federal University of Itajubá, (IFQ/UNIFEI), BPS Avenue, 1303, ZIP Code 37500-903, Itajubá-MG, Brazil

Received: 19 Sep 2024; Revised: 1 Nov 2024; Accepted: 2 Nov 2024; Available online: 10 Nov 2024; Published: 30 Dec 2024.
Editor(s): Bunjerd Jongsomjit
Open Access Copyright (c) 2024 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

In this work, zinc oxide microparticles doped with cobalt were prepared from two novel layered heterobimetallic monocarboxylates as precursors to obtain uniform shape and size oxide particles, aiming for a photocatalytic removal of methyl orange. Both monocarboxylates produced ZnO doped with Co2O3 after calcination at 700 or 900 °C, in 7 or 12 hours. The particles formed by the laurate precursor presented rectangular prisms shaped, while those formed from stearate were sphere-like particles. All particles ranged from 0.1 to 0.9 μm size, with a direct bandgap of 2.2 to 2.6 eV and an indirect bandgap of 0.25 to 1.70 eV. The ZnO/Co prepared presented photocatalytic activity on methyl orange photodegradation. The solid prepared by the laurate precursor showed a photodegradation rate of 0.00185 min-1, while the one obtained from the stearate precursor presented a photodegradation rate of 0.00860 min-1, eight times greater. These results show that the material may be very useful in removing dyes from water samples. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Supporting Information (SI) PDF
Keywords: monocarboxylates; dye; zinc oxide; layered materials; degradation
Funding: Federal University of Paraná; Federal University of Itajubá

Article Metrics:

  1. Kumar, J.A., Krithiga, T., Sathish, S., Renita, A.A., Prabu, D., Lokesh, S., Geetha, R., Namasivayam, S.K.R., Sillanpaa, M. (2022). Persistent organic pollutants in water resources: Fate, occurrence, characterization and risk analysis. Sci. Total Environ, 831, 154808. DOI: 10.1016/j.scitotenv.2022.154808
  2. Hanafi, M.F., Sapawe, N. (2020). A review on the current techniques and technologies of organic pollutants removal from water/wastewater. Mater. Today: Proc., 31, A158–A165. DOI: 10.1016/j.matpr.2021.01.265
  3. Kaur, J., Bansal, S., Singhal, S. (2013). Photocatalytic degradation of methyl orange using ZnO nanopowders synthesized via thermal decomposition of oxalate precursor method. Phys. B, 416, 33–38. DOI: 10.1016/j.physb.2013.02.005
  4. Peerakiatkhajohn, P., Butburee, T., Sul, J.-H., Thaweesak, S., Yun, J.-H. (2021). Efficient and Rapid Photocatalytic Degradation of Methyl Orange Dye Using Al/ZnO Nanoparticles. Nanomaterials, 11, 1059. DOI: 10.3390/nano11041059
  5. Sha, Y., Mathew, I., Cui, Q., Clay, M., Gao, F., Zhang, X.J., Gu, Z. (2016). Rapid degradation of azo dye methyl orange using hollow cobalt nanoparticles. Chemosphere, 144, 1530–1535. DOI: 10.1016/j.chemosphere.2015.10.040
  6. Rajendran, M., Bhattacharya, A.K. (1999). Low-temperature formation of alpha alumina powders from carboxylate and mixed carboxylate precursors. Mater. Lett., 39, 188–195. DOI: 10.1016/s0167-577x(99)00004-x
  7. Barman, S., Vasudevan, S. (2006). Melting of Saturated Fatty Acid Zinc Soaps, J. Phys. Chem. B, 110, 22407–22414. DOI: 10.1021/jp064306p
  8. Hermans, J., Keune, K., van Loon, A., Stols-Witlox, M., Corkery, R., Iedema, P. (2014). The synthesis of new types of lead and zinc soaps: a source of information for the study of oil paint degradation. In J. Bridgland (Ed.), Building strong culture through conservation: preprints ICOM-CC 17th Triennial Conference, 1603
  9. Peultier, J., Rocca, E., Steinmetz, J. (2003). Zinc carboxylating: a new conversion treatment of zinc. Corros. Sci., 45, 1703–1716. DOI: 10.1016/s0010-938x(03)00020-9
  10. Guo, G., Shi, C., Tao, D., Qian, W., Han, D. (2009). Synthesis of well-dispersed ZnO nanomaterials by directly calcining zinc stearate. J. Alloys Comp., 472, 343–346. DOI: 10.1016/j.jallcom.2008.04.048
  11. Boehm, A.K., Husmann, S., Besch, M., Janka, O., Presser, V., Gallei, M. (2021). Porous Mixed-Metal Oxide Li-Ion Battery Electrodes by Shear-Induced Co-assembly of Precursors and Tailored Polymer Particles. ACS Appl. Mater. Interfaces, 13, 61166–61179. DOI: 10.1021/acsami.1c19027
  12. Poizot, P., Laruelle, S., Grugeon, S., Dupont, L., Tarascon, J.-M. (2000). Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature, 407, 496–499. DOI: 10.1038/35035045
  13. Pal, J., Chauhan, P. (2010). Study of physical properties of cobalt oxide (Co3O4) nanocrystals. Mater. Charact., 61, 575–579. DOI: 10.1016/j.matchar.2010.02.017
  14. Saravanan, R., Gupta, V.K., Narayanan, V., Stephen, A. (2013). Comparative study on photocatalytic activity of ZnO prepared by different methods. J. Mol. Liq., 181, 133–141. DOI: 10.1016/j.molliq.2013.02.023
  15. Sun, X., You, R., Hu, X., Mo, J., Xiong, R., Ji, H., Li, X., Cai, S., Zheng, C., Meng, M. (2015). Calcination system-induced nanocasting synthesis of uniform Co3O4 nanoparticles with high surface area and enhanced catalytic performance. RSC Adv., 5, 35524–35534. DOI: 10.1039/c5ra03271g
  16. Modwi, A., Ghanem, M.A., Al-Mayouf, A.M., Houas, A. (2018). Lowering energy band gap and enhancing photocatalytic properties of Cu/ZnO composite decorated by transition metals. J. Mol. Struct., 1173, 1–6. DOI: 10.1016/j.molstruc.2018.06.082
  17. Ali, R.N., Naz, H., Li, J., Zhu, X., Liu, P., Xiang, B. (2018). Band gap engineering of transition metal (Ni/Co) codoped in zinc oxide (ZnO) nanoparticles. J. Alloys Compd., 744, 90–95. DOI: 10.1016/j.jallcom.2018.02.072
  18. Romeiro, F.C., Marinho, J.Z., Lemos, S.C.S., de Moura, A.P., Freire, P.G., da Silva, L.F., Longo, E., Munoz, R.A.A., Lima, R.C. (2015). Rapid synthesis of Co, Ni co-doped ZnO nanoparticles: Optical and electrochemical properties. J. Solid State Chem., 230, 343–349. DOI: 10.1016/j.jssc.2015.07.026
  19. Lghazi, Y., Bahar, J., Youbi, B., Ait Himi, M., Elhaimer, C., Elouadrhiri, A., Bimaghra, I., Ouknin, M., Majidi. L. (2021). Nucleation/Growth and Optical Proprieties of Co-doped ZnO Electrodeposited on ITO Substrate. Biointerface Res. Appl. Chem., 12, 6776–6787. DOI: 10.33263/briac125.67766787
  20. Dou, Q., Ng, K.M. (2016). Synthesis of various metal stearates and the corresponding monodisperse metal oxide nanoparticles. Powder Technol., 301, 949–958. DOI: 10.1016/j.powtec.2016.07.037
  21. Lisboa, F.S., da Gardolinski, J.E.F., Cordeiro, C.S., Wypych, F. (2012). Layered metal laurates as active catalysts in the methyl/ethyl esterification reactions of lauric acid. J. Braz. Chem. Soc., 23, 39–45. DOI: 10.1590/s0103-50532012000100008
  22. Hermans, J.J., Keune, K., van Loon, A., Corkery, R.W., Iedema, P.D. (2014). The molecular structure of three types of long-chain zinc(II) alkanoates for the study of oil paint degradation. Polyhedron, 81, 335–340. DOI: 10.1016/j.poly.2014.06.030
  23. Toledo, R.P., Huanca, D.R., Oliveira, A.F., dos Santos Filho, S.G., Salcedo, W.J. (2020). Electrical and optical characterizations of erbium doped MPS/PANI heterojunctions. Appl. Surf. Sci., 529, 146994. DOI: 10.1016/j.apsusc.2020.146994
  24. Azab, A.A., Esmail, S.A., Abdelamksoud, M.K. (2018). Studying the Effect of Cobalt Doping on Optical and Magnetic Properties of Zinc Oxide Nanoparticles. Silicon, 11, 165–174. DOI: 10.1007/s12633-018-9902-4
  25. Patel, M., Chavda, A., Mukhopadhyay, I., Kim, J., & Ray, A. (2016). Nanostructured SnS with inherent anisotropic optical properties for high photoactivity. Nanoscale, 8(4), 2293–2303. DOI: 10.1039/c5nr06731f
  26. Barman, S., Vasudevan, S. (2005). Contrasting Melting Behavior of Zinc Stearate and Zinc Oleate. J. Phys. Chem. B, 110, 651–654. DOI: 10.1021/jp055814m
  27. Ishioka, T., Maeda, K., Watanabe, I., Kawauchi, S., Harada, M. (2000). Infrared and XAFS study on structure and transition behavior of zinc stearate. Spectrochim. Acta, Part A, 56, 1731–1737. DOI: 10.1016/s1386-1425(00)00225-0
  28. Gönen, M., Balköse, D., İnal, F., Ülkü, S. (2005). Zinc Stearate Production by Precipitation and Fusion Processes. Ind. Eng. Chem. Res., 44, 1627–1633. DOI: 10.1021/ie049398o
  29. Guo, G., Shi, C., Tao, D., Qian, W., Han, D. (2009). Synthesis of well-dispersed ZnO nanomaterials by directly calcining zinc stearate. J. Alloys Compd., 472, 343–346. DOI: 10.1016/j.jallcom.2008.04.048
  30. Manjula, N., Chen, T.-W., Chen, S.-M., Lou, B.-S. (2021). Facile synthesis of hexagonal-shaped zinc doped cobalt oxide: Application for electroanalytical determination of antibacterial drug ofloxacin in urine samples. J. Electroanal. Chem., 885, 115101. DOI: 10.1016/j.jelechem.2021.115101
  31. Yang, H., Zhu, X., Zhu, E., Lou, G., Wu, Y., Lu, Y., Wang, H., Song, J., Tao, Y., Pei, G., Chu, Q., Chen, H., Ma, Z., Song, P., Shen, Z. (2019). Electrochemically Stable Cobalt–Zinc Mixed Oxide/Hydroxide Hierarchical Porous Film Electrode for High-Performance Asymmetric Supercapacitor. Nanomaterials, 9, 345. DOI: 10.3390/nano9030345
  32. Imran, M., Kim, D.H., Al-Masry, W.A., Mahmood, A., Hassan, A., Haider, S., Ramay, S.M. (2013). Manganese-, cobalt-, and zinc-based mixed-oxide spinels as novel catalysts for the chemical recycling of poly(ethylene terephthalate) via glycolysis. Polym. Degrada. Stab., 98, 904–915. DOI: 10.1016/j.polymdegradstab.2013.01.007
  33. Ganguly, A., Kundu, R., Ramanujachary, K.V., Lofland, S.E., Das, D., Vasanthacharya, N.Y., Ahmad, T., Ganguli, A.K. (2008). Role of carboxylate ion and metal oxidation state on the morphology and magnetic properties of nanostructured metal carboxylates and their decomposition products. J. Chem. Sci., 120, 521–528. DOI: 10.1007/s12039-008-0081-5
  34. Rosenlehner, K., Schade, B., Böttcher, C., Jäger, C.M., Clark, T., Heinemann, F.W., Hirsch, A. (2010). Sodium Effect on Self‐Organization of Amphiphilic Carboxylates: Formation of Structured Micelles and Superlattices. Chem. – Eur. J., 16, 9544–9554. DOI: 10.1002/chem.201001150
  35. Li, H., Bu, W., Qi, W., Wu, L. (2005). Self-Assembled Multibilayers of Europium Alkanoates: Structure, Photophysics, and Mesomorphic Behavior. J. Phys. Chem. B, 109, 21669–21676. DOI: 10.1021/jp053980o
  36. Binnemans, K., Jongen, L., Görller-Walrand, C., D’Olieslager, W., Hinz, D., Meyer, G. (2000). Lanthanide(III) Dodecanoates: Structure, Thermal Behaviour, and Ion-Size Effects on the Mesomorphism. Eur. J. Inorg. Chem., 2000, 1429–1436. DOI: 10.1002/1099-0682(200007)2000:7<1429::aid-ejic1429>3.0.co;2-9
  37. Tancredi, P., Veiga, L.S., Garate, O., Ybarra, G. (2019). Magnetophoretic mobility of iron oxide nanoparticles stabilized by small carboxylate ligands. Colloids Surf., A, 579, 123664. DOI: 10.1016/j.colsurfa.2019.123664
  38. Neouze, M.-A., Schubert, U. (2008). Surface Modification and Functionalization of Metal and Metal Oxide Nanoparticles by Organic Ligands. Monatsh. Chem., 139, 183–195. DOI: 10.1007/s00706-007-0775-2
  39. Yuan, L.-D., Deng, H.-X., Li, S.-S., Wei, S.-H., Luo, J.-W. (2018). Unified theory of direct or indirect band-gap nature of conventional semiconductors. Phys. Rev. B, 98. DOI: 10.1103/physrevb.98.245203
  40. Agarwal, S., Jangir, L.K., Rathore, K.S., Kumar, M., Awasthi, K. (2019). Morphology-dependent structural and optical properties of ZnO nanostructures. Appl. Phys. A, 125, DOI: 10.1007/s00339-019-2852-x
  41. Ekennia, A.C., Uduagwu, D.N., Nwaji, N.N., Oje, O.O., Emma-Uba, C.O., Mgbii, S.I., Olowo, O.J., Nwanji, O.L. (2020). Green Synthesis of Biogenic Zinc Oxide Nanoflower as Dual Agent for Photodegradation of an Organic Dye and Tyrosinase Inhibitor. J. Inorg. Organomet. Polym., 31, 886–897. DOI: 10.1007/s10904-020-01729-w
  42. Wang, Y., Ge, H.X., Chen, Y.P., Meng, X.Y., Ghanbaja, J., Horwat, D., Pierson, J.F. (2018). Wurtzite CoO: a direct band gap oxide suitable for a photovoltaic absorber. Chem. Commun., 54, 13949–13952. DOI: 10.1039/c8cc06777e
  43. Jiang, H., Gomez-Abal, R.I., Rinke, P., Scheffler, M. (2010). First-principles modeling of localized d states with the GW@LDA+U approach. Phys. Rev. B, 82. DOI: 10.1103/physrevb.82.045108
  44. Akitsugu Kimura, A.K., Yasuhiro Ohbuchi, Y.O., Toshio Kawahara, T.K., Yoichi Okamoto, Y.O., Jun Morimoto, J.M. (2001). Photoacoustic Spectra of ZnO-CoO Alloy Semiconductors. Jpn. J. Appl. Phys., 40, 3614. DOI: 10.1143/jjap.40.3614
  45. Dey, P.Ch., Das, R. (2020). Enhanced photocatalytic degradation of methyl orange dye on interaction with synthesized ligand free CdS nanocrystals under visible light illumination. Spectrochim. Acta, Part A, 231, 118122. DOI: 10.1016/j.saa.2020.118122
  46. Kaur, J., Singhal, S. (2014). Facile synthesis of ZnO and transition metal doped ZnO nanoparticles for the photocatalytic degradation of Methyl Orange. Ceram. Int., 40, 7417–7424. DOI: 10.1016/j.ceramint.2013.12.088
  47. Barick, K.C., Singh, S., Aslam, M., Bahadur, D. (2010). Porosity and photocatalytic studies of transition metal doped ZnO nanoclusters. Microporous and Mesoporous Materials, 134, 195–202. DOI: 10.1016/j.micromeso.2010.05.026
  48. Ali, A.M., Emanuelsson, E.A.C., Patterson, D.A. (2010). Photocatalysis with nanostructured zinc oxide thin films: The relationship between morphology and photocatalytic activity under oxygen limited and oxygen rich conditions and evidence for a Mars Van Krevelen mechanism. Appl. Catal. B, 97, 168–181. DOI: 10.1016/j.apcatb.2010.03.037
  49. Khan, R., Hassan, M.S., Cho, H.-S., Polyakov, A.Y., Khil, M.-S., Lee, I.-H. (2014). Facile low-temperature synthesis of ZnO nanopyramid and its application to photocatalytic degradation of methyl orange dye under UV irradiation. Mater. Lett., 133, 224–227. DOI: 10.1016/j.matlet.2014.07.006
  50. Tripathy, N., Ahmad, R., Eun Song, J., Ah Ko, H., Hahn, Y.-B., Khang, G. (2014). Photocatalytic degradation of methyl orange dye by ZnO nanoneedle under UV irradiation. Mater. Lett., 136, 171–174. DOI: 10.1016/j.matlet.2014.08.064
  51. Tuc Altaf, C., Colak, T.O., Rostas, A.M., Popa, A., Toloman, D., Suciu, M., Demirci Sankir, N., Sankir, M. (2023). Impact on the Photocatalytic Dye Degradation of Morphology and Annealing-Induced Defects in Zinc Oxide Nanostructures. ACS Omega, 8, 14952–14964. DOI: 10.1021/acsomega.2c07412
  52. Gong, J. Lv, W., Huang, K., Zhu, J., Meng, F., Song, X., Sun, Z. (2011). Effect of annealing temperature on photocatalytic activity of ZnO thin films prepared by sol–gel method. Superlattices Microstruct., 50, 98–106. DOI: 10.1016/j.spmi.2011.05.003
  53. Tripathy, N., Ahmad, R., Kuk, H., Lee, D.H., Hahn, Y.-B., Khang, G. (2016). Rapid methyl orange degradation using porous ZnO spheres photocatalyst. J. Photochem. Photobiol. B, 161, 312–317. DOI: 10.1016/j.jphotobiol.2016.06.003
  54. Sun, Y., Chen, L., Bao, Y., Zhang, Y., Wang, J., Fu, M., … Ye, D. (2016). The applications of morphology controlled ZnO in catalysis. Catalysts (Basel, Switzerland), 6(12), 188. DOI: 10.3390/catal6120188
  55. Yu, C., Yang, K., Xie, Y., Fan, Q., Yu, J. C., Shu, Q., & Wang, C. (2013). Novel hollow Pt-ZnO nanocomposite microspheres with hierarchical structure and enhanced photocatalytic activity and stability. Nanoscale, 5(5), 2142–2151. DOI: 10.1039/c2nr33595f

Last update:

No citation recorded.

Last update:

No citation recorded.