1Research Center for Applied Microbiology, National Research and Innovation Agency, Jalan Raya Bogor KM 46, Cibinong, Bogor, 16911, West Java, Indonesia
2Biotechnology Study Program, Department of Applied Science, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Semarang No. 5, Malang 65145, Indonesia
3Health and Food Centre, Institute of Research and Community Services, Universitas Negeri Malang, Jl. Semarang No. 5, Malang 65145, Indonesia
4 Bhakti Kencana University, Jalan Soekarno Hatta No.754, Cipadung Kidul, Bandung, 40614, West Java, Indonesia
BibTex Citation Data :
@article{BCREC20234, author = {Titin Haryati and Norman Yoshi Haryono and Dian Nugraheni and Fenti Fatmawati and Alfina Kusuma Dewi and Muhammad Zahran Edlian Syach}, title = {Extracellular Lipase from Pseudomonas aeruginosa SB-37: Production by Solid State Fermentation, Immobilization, and Characterization}, journal = {Bulletin of Chemical Reaction Engineering & Catalysis}, volume = {19}, number = {4}, year = {2024}, keywords = {Native lipase; SSF; agrowastes; palm kernel meal; alginate entrapment}, abstract = { Native lipase is still promising as an industrial biocatalyst. This study aimed to investigate the production of native local lipase using solid state fermentation (SSF) methods, immobilization the lipase by Ca-alginate entrapment, and characterization based on substrate preferences. To obtain high lipase production using SSF methods, we optimized the type of agro-wastes substrates, fermentation time, oil induction percentage and volume of preculture percentage. The optimal condition for lipase production via solid-state fermentation involved a 7% (v/v) preculture of Pseudomonas aeruginosa SB-37, utilizing palm kernel meal as the substrate, supplemented with 6% (v/w) oil induction (soybean oil:tween 80 = 75:25) at 50 °C for 24 h. This gave a lypolitic activity value of 2 U/gds (gram dry weight substrates). Since the protein profile of extracellular lipase has a few protein bands, we perform direct immobilization on crude protein supernatant. Immobilization by Ca-alginate entrapment results in loading capacity and recovery activity values of 86.84% and 148%, respectively. The immobilized lipase retained 92% activity until four batch repetition and keep 40% activity at tenth batch. The highest hydrolytic activity of immobilized lipase was 0.9 U/g gel on the pNP_8 substrates. While the highest transesterification activity was observed with acetonitrile solvent and substrates of pNP_8 and isopropanol with the activity value at 0.6 U/g gel. This present study emphasized the feasibility of producing lipase as a biocatalysts using economical agro-industrial wastes and efficient immobilization using entrapment method. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License ( https://creativecommons.org/licenses/by-sa/4.0 ). }, issn = {1978-2993}, pages = {710--721} doi = {10.9767/bcrec.20234}, url = {https://journal.bcrec.id/index.php/bcrec/article/view/20234} }
Refworks Citation Data :
Native lipase is still promising as an industrial biocatalyst. This study aimed to investigate the production of native local lipase using solid state fermentation (SSF) methods, immobilization the lipase by Ca-alginate entrapment, and characterization based on substrate preferences. To obtain high lipase production using SSF methods, we optimized the type of agro-wastes substrates, fermentation time, oil induction percentage and volume of preculture percentage. The optimal condition for lipase production via solid-state fermentation involved a 7% (v/v) preculture of Pseudomonas aeruginosa SB-37, utilizing palm kernel meal as the substrate, supplemented with 6% (v/w) oil induction (soybean oil:tween 80 = 75:25) at 50 °C for 24 h. This gave a lypolitic activity value of 2 U/gds (gram dry weight substrates). Since the protein profile of extracellular lipase has a few protein bands, we perform direct immobilization on crude protein supernatant. Immobilization by Ca-alginate entrapment results in loading capacity and recovery activity values of 86.84% and 148%, respectively. The immobilized lipase retained 92% activity until four batch repetition and keep 40% activity at tenth batch. The highest hydrolytic activity of immobilized lipase was 0.9 U/g gel on the pNP_8 substrates. While the highest transesterification activity was observed with acetonitrile solvent and substrates of pNP_8 and isopropanol with the activity value at 0.6 U/g gel. This present study emphasized the feasibility of producing lipase as a biocatalysts using economical agro-industrial wastes and efficient immobilization using entrapment method. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Article Metrics:
Last update:
In order for Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group to publish and disseminate research articles, we need non-exclusive publishing rights (transfered from author(s) to publisher). This is determined by a publishing agreement between the Author(s) and Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group. This agreement deals with the transfer or license of the copyright of publishing to Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group, while Authors still retain significant rights to use and share their own published articles. Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group supports the need for authors to share, disseminate and maximize the impact of their research and these rights, in any databases.
As a journal Author, you have rights for a large range of uses of your article, including use by your employing institute or company. These Author rights can be exercised without the need to obtain specific permission. Authors publishing in BCREC journals have wide rights to use their works for teaching and scholarly purposes without needing to seek permission, including, but not limited to:
Authors/Readers/Third Parties can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (the name of the creator and attribution parties (authors detail information), a copyright notice, an open access license notice, a disclaimer notice, and a link to the material), provide a link to the license, and indicate if changes were made (Publisher indicates the modification of the material (if any) and retain an indication of previous modifications using a CrossMark Policy and information about Erratum-Corrigendum notification).
Authors/Readers/Third Parties can read, print and download, redistribute or republish the article (e.g. display in a repository), translate the article, download for text and data mining purposes, reuse portions or extracts from the article in other works, sell or re-use for commercial purposes, remix, transform, or build upon the material, they must distribute their contributions under the same license as the original Creative Commons Attribution-ShareAlike (CC BY-SA).
The Authors submitting a manuscript do so on the understanding that if accepted for publication, non-exclusive right for publishing (publishing right) of the article shall be assigned/transferred to Publisher of Bulletin of Chemical Reaction Engineering & Catalysis journal (Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group).
Upon acceptance of an article, authors will be asked to complete a 'Copyright Transfer Agreement for Publishing (CTAP)'. An e-mail will be sent to the Corresponding Author confirming receipt of the manuscript together with a 'Copyright Transfer Agreement for Publishing' form by online version of this agreement.
Bulletin of Chemical Reaction Engineering & Catalysis journal and Masyarakat Katalis Indonesia-Indonesian Catalyst Society (MKICS), the Editors and the Advisory International Editorial Board make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in the Bulletin of Chemical Reaction Engineering & Catalysis are sole and exclusive responsibility of their respective authors and advertisers.
Remember, even though we ask for a transfer of copyright for publishing (CTAP), our journal Author(s) retain (or are granted back) significant scholarly rights as mentioned before.
The Copyright Transfer Agreement for Publishing (CTAP) Form can be downloaded here: [Copyright Transfer Agreement for Publishing (CTAP) Form BCREC 2024]
The copyright form should be signed electronically and send to the Editorial Office in the form of original e-mail below: Prof. Dr. I. Istadi (Editor-in-Chief)Editorial Office of Bulletin of Chemical Reaction Engineering & CatalysisLaboratory of Plasma-Catalysis (R3.5), UPT Laboratorium Terpadu, Universitas DiponegoroJl. Prof. Soedarto, Semarang, Central Java, Indonesia 50275Telp/Whatsapp: +62-81-316426342E-mail: bcrec[at]live.undip.ac.id
(This policy statements has been updated at 24th January 2024)