skip to main content

Extracellular Lipase from Pseudomonas aeruginosa SB-37: Production by Solid State Fermentation, Immobilization, and Characterization

1Research Center for Applied Microbiology, National Research and Innovation Agency, Jalan Raya Bogor KM 46, Cibinong, Bogor, 16911, West Java, Indonesia

2Biotechnology Study Program, Department of Applied Science, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Semarang No. 5, Malang 65145, Indonesia

3Health and Food Centre, Institute of Research and Community Services, Universitas Negeri Malang, Jl. Semarang No. 5, Malang 65145, Indonesia

4 Bhakti Kencana University, Jalan Soekarno Hatta No.754, Cipadung Kidul, Bandung, 40614, West Java, Indonesia

View all affiliations
Received: 23 Oct 2024; Revised: 18 Dec 2024; Accepted: 21 Dec 2024; Available online: 23 Dec 2024; Published: 30 Dec 2024.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2024 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Native lipase is still promising as an industrial biocatalyst. This study aimed to investigate the production of native local lipase using solid state fermentation (SSF) methods, immobilization the lipase by Ca-alginate entrapment, and characterization based on substrate preferences. To obtain high lipase production using SSF methods, we optimized the type of agro-wastes substrates, fermentation time, oil induction percentage and volume of preculture percentage. The optimal condition for lipase production via solid-state fermentation involved a 7% (v/v) preculture of Pseudomonas aeruginosa SB-37, utilizing palm kernel meal as the substrate, supplemented with 6% (v/w) oil induction (soybean oil:tween 80 = 75:25) at 50 °C for 24 h. This gave a lypolitic activity value of 2 U/gds (gram dry weight substrates). Since the protein profile of extracellular lipase has a few protein bands, we perform direct immobilization on crude protein supernatant. Immobilization by Ca-alginate entrapment results in loading capacity and recovery activity values of 86.84% and 148%, respectively. The immobilized lipase retained 92% activity until four batch repetition and keep 40% activity at tenth batch. The highest hydrolytic activity of immobilized lipase was 0.9 U/g gel on the pNP_8 substrates. While the highest transesterification activity was observed with acetonitrile solvent and substrates of pNP_8 and isopropanol with the activity value at 0.6 U/g gel. This present study emphasized the feasibility of producing lipase as a biocatalysts using economical agro-industrial wastes and efficient immobilization using entrapment method. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Native lipase; SSF; agrowastes; palm kernel meal; alginate entrapment
Funding: National Research and Innovation Agency

Article Metrics:

  1. Chandra, P., Singh, R., Arora, P.K. (2020). Microbial lipases and their industrial applications: a comprehensive review. Microbial Cell Factories, 19(1), 1–42. DOI: 10.1186/s12934-020-01428-8
  2. Ali, S., Khan, S.A., Hamayun, M., Lee, I.-J. (2023). The Recent Advances in the Utility of Microbial Lipases: A Review. Microorganisms, 11(2). DOI: 10.3390/microorganisms11020510
  3. Islam, A., Singh, P.K., Mausam, K. (2021). Identification and recommendation of waste materials and 3R practices in developing industries. Materials Today: Proceedings, 45, 3318–3322. DOI: 10.1016/j.matpr.2020.12.645
  4. Andhalkar, V.V., de María, P.D., Montané, D., Medina, F., Constantí, M. (2024). From agricultural waste to value: Integrated chemo and biocatalytic biorefinery processes to produce 2-furoic acid. Chemical Engineering Journal, 500, 156879. DOI: 10.1016/j.cej.2024.156879
  5. Aulitto, M., Alfano, A., Maresca, E., Avolio, R., Errico, M.E., Gentile, G., Cozzolino, F., Monti, M., Pirozzi, A., Donsì, F. (2024). Thermophilic biocatalysts for one-step conversion of citrus waste into lactic acid. Applied Microbiology and Biotechnology, 108(1), 155. DOI: 10.1007/s00253-023-12904-7
  6. K. de S. Lira, R., T. Zardini, R., CC de Carvalho, M., Wojcieszak, R., GF Leite, S., Itabaiana Jr, I. (2021). Agroindustrial wastes as a support for the immobilization of lipase from Thermomyces lanuginosus: Synthesis of hexyl laurate. Biomolecules, 11(3), 445. DOI: 10.3390/biom11030445
  7. Bala, S., Garg, D., Sridhar, K., Inbaraj, B.S., Singh, R., Kamma, S., Tripathi, M., Sharma, M. (2023). Transformation of Agro-Waste into Value-Added Bioproducts and Bioactive Compounds: Micro/Nano Formulations and Application in the Agri-Food-Pharma Sector. Bioengineering (Basel, Switzerland), 10(2) DOI: 10.3390/bioengineering10020152
  8. Yaashikaa, P.R., Kumar, P.S., Varjani, S. (2022). Valorization of agro-industrial wastes for biorefinery process and circular bioeconomy: A critical review. Bioresource Technology, 343, 126126. DOI: 10.1016/j.biortech.2021.126126
  9. Çağatay, Ş., Aksu, Z. (2021). Use of different kinds of wastes for lipase production: Inductive effect of waste cooking oil on activity. Journal of Bioscience and Bioengineering, 132(3), 234–240. DOI: 10.1016/j.jbiosc.2021.05.007
  10. Lopes, V.R.O., Farias, M.A., Belo, I.M.P., Coelho, M.A.Z. (2016). Nitrogen sources on TPOMW valorization through solid state fermentation performed by Yarrowia lipolytica. Brazilian Journal of Chemical Engineering, 33(2), 261–270. DOI: 10.1590/0104-6632.20160332s20150146
  11. Miguel Júnior, J., Dimas, J.V.B., Barbosa, M.S., Gomes, R.A.B., Carvalho, A.K.F., Soares, C.M.F., Fernandez-Lafuente, R., Mendes, A.A. (2024). Biocatalytic Production of Solketal Esters from Used Oil Utilizing Treated Macauba Epicarp Particles as Lipase Immobilization Support: A Dual Valorization of Wastes for Sustainable Chemistry. Catalysts, 14(10), 693. DOI: 10.3390/catal14100693
  12. Fraga, J.L., Souza, C.P.L., Pereira, A. da S., Aguieiras, E.C.G., de Silva, L.O., Torres, A.G., Freire, D.G., Amaral, P.F.F. (2021). Palm oil wastes as feedstock for lipase production by Yarrowia lipolytica and biocatalyst application/reuse. 3 Biotech., 11(4), 191. DOI: 10.1007/s13205-021-02748-1
  13. Buarque, F.S., Farias, M.A., Sales, J.C.S., Carniel, A., Ribeiro, B.D., Lopes, V.R. de O., Castro, A.M., Coelho, M.A.Z. (2023). Valorization of Macauba (Acromia aculeata) for Integrated Production of Lipase by Yarrowia lipolytica and Biodiesel Esters. Fermentation, 9(12), 992. DOI: 10.3390/fermentation9120992
  14. Sadh, P.K., Duhan, S., Duhan, J.S. (2018). Agro-industrial wastes and their utilization using solid state fermentation: a review. Bioresources and Bioprocessing, 5 (1), 1. DOI: 10.1186/s40643-017-0187-z
  15. Baloch, K.A., Upaichit, A., Cheirsilp, B. (2019). Use of low-cost substrates for cost-effective production of extracellular and cell-bound lipases by a newly isolated yeast Dipodascus capitatus A4C. Biocatalysis and Agricultural Biotechnology, 19, 101102. DOI: 10.1016/j.bcab.2019.101102
  16. Haryati, T., Laksmi, F.A., Nuryana, I., Nur, N., Ragamustari, S. K., Purnawan, A. (2023). Strain bakteri termotoleran Pseudomonas aeruginosa SB-37 yang mampu menghasilkan enzim lipase termostabil dan toleran asam. Indonesian Patent 1–6, No. P00202315084
  17. Vivek, K., Sandhia, G.S., Subramaniyan, S. (2022). Extremophilic lipases for industrial applications: A general review. Biotechnology Advances, 60, 108002. DOI: 10.1016/j.biotechadv.2022.108002
  18. Datta, S., Christena, L.R., Rajaram, Y.R.S. (2013). Enzyme immobilization: an overview on techniques and support materials. Biotech., 3, 1–9. DOI: 10.1007/s13205-012-0071-7
  19. Liu, D.-M., Chen, J., Shi, Y.-P. (2018). Advances on methods and easy separated support materials for enzymes immobilization. TrAC Trends in Analytical Chemistry, 102, 332–342. DOI: 10.1016/j.trac.2018.03.011
  20. Faisal, P.A., Hareesh, E.S., Priji, P., Unni, K.N., Sajith, S., Sreedevi, S., Josh, M.S., Benjamin, S. (2014). Optimization of parameters for the production of lipase from Pseudomonas sp. BUP6 by solid state fermentation. Advances in Enzyme Research, 2(04), 125–133
  21. Jafri, N.W.R., Shahbaz, K., Abdullah, N., Idaty, T., Mohd Ghazi, T. (2014). Biodiesel production from palm oil using lipase immobilized in ca-alginate gel and its application to an oscillatory flow reactor. SOMChE & RSCE, 1, 1-12
  22. Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254. DOI: 10.1016/0003-2697(76)90527-3
  23. Lee, D.W., Koh, Y.S., Kim, K.J., Kim, B.C., Choi, H.J., Kim, D.S., Suhartono, M.T., Pyun, Y.R. (1999). Isolation and characterization of a thermophilic lipase from Bacillus thermoleovorans ID-1. FEMS Microbiology Letters, 179(2), 393–400. DOI: 10.1016/S0378-1097(99)00440-1
  24. Fu, X., Zheng, J., Ying, X., Yan, H., Wang, Z. (2014). Investigation of Lipozyme TL IM-catalyzed transesterification using ultraviolet spectrophotometric assay. Chinese Journal of Catalysis, 35(4), 553–559. DOI: 10.1016/S1872-2067(14)60053-X
  25. Mahanta, N., Gupta, A., Khare, S.K. (2008). Production of protease and lipase by solvent tolerant Pseudomonas aeruginosa PseA in solid-state fermentation using Jatropha curcas seed cake as substrate. Bioresource Technology, 99 (6), 1729–1735. DOI: 10.1016/j.biortech.2007.03.046
  26. Balandrán-Quintana, R.R., Mendoza-Wilson, A.M., Montfort, G.R.-C., Huerta-Ocampo, J.Á. (2019). Plant-based proteins. In: Proteins: Sustainable Source, Processing and Applications. Elsevier, pp. 97–130
  27. Arsy, S.L., Oetari, A., Sjamsuridzal, W. (2020). Solid-state fermentation of sterile slurry and palm kernel cake (PKC) mixture using Rhizopus azygosporus UICC 539. In: IOP Conference Series: Earth and Environmental Science. IOP Publishing, p. 12029
  28. Oliveira, A.C., Amorim, G.M., Azevêdo, J.A.G., Godoy, M.G., Freire, D.M.G. (2018). Solid-state fermentation of co-products from palm oil processing: production of lipase and xylanase and effects on chemical composition. Biocatalysis and Biotransformation, 36(5), 381–388. DOI: 10.1080/10242422.2018.1425400
  29. Muthulakshmi, C., Gomathi, D., Kumar, D.G. (2011). Production, purification and characterization of protease by Aspergillus flavus under solid state fermentation. Jordan Journal of Biological Sciences. (621) 147
  30. Nadeem, F., Mehmood, T., Anwar, Z., Saeed, S., Bilal, M., Meer, B. (2021). Optimization of bioprocess steps through response surface methodology for the production of immobilized lipase using Chaetomium globosum via solid-state fermentation. Biomass Conversion and Biorefinery, 1–12. DOI: 10.1007/s13399-021-01752-y
  31. Sachan, S., Singh, A. (2017). Production of lipase by Pseudomonas Aeruginosa JCM5962 (T) under semi-solid state fermentation: potential use of Azadirachta Indica (Neem) oil cake. Biosci. Biotechnol. Res. Asia, 14(2), 767–773. DOI: 10.13005/bbra/2506
  32. Martínez-Corona, R., Banderas-Martínez, F.J., Pérez-Castillo, J.N., Cortés-Penagos, C., González-Hernández, J.C. (2019). Avocado oil as an inducer of the extracellular lipase activity of Kluyveromyces marxianus L-2029. Food Science and Technology, 40(Suppl. 1), 121–129. DOI: 10.1590/fst.06519
  33. Sipiczki, G., Micevic, S.S., Kohari-Farkas, C., Nagy, E.S., Nguyen, Q.D., Gere, A., Bujna, E. (2024). Effects of Olive Oil and Tween 80 on Production of Lipase by Yarrowia Yeast Strains. Processes, 12(6), 1206. DOI: 10.3390/pr12061206
  34. Gonçalves, F.A.G., Colen, G., Takahashi, J.A. (2014). Yarrowia lipolytica and its multiple applications in the biotechnological industry. The Scientific World Journal, 2014(1), 476207. DOI: 10.1155/2014/476207
  35. Hermansyah, H., Maresya, A., Putri, D.N., Sahlan, M., Meyer, M. (2018). Production of dry extract lipase from Pseudomonas aeruginosa by the submerged fermentation method in palm oil mill effluent. International Journal of Technology, 9(2), 325–334. DOI: 10.14716/ijtech.v9i2.1511
  36. Isiaka Adetunji, A., Olufolahan Olaniran, A. (2018). Optimization of culture conditions for enhanced lipase production by an indigenous Bacillus aryabhattai SE3-PB using response surface methodology. Biotechnology & Biotechnological Equipment, 32(6), 1514–1526. DOI: 10.1080/13102818.2018.1514985
  37. Venkatesagowda, B., Ponugupaty, E., Barbosa, A.M., Dekker, R.F.H. (2015). Solid-state fermentation of coconut kernel-cake as substrate for the production of lipases by the coconut kernel-associated fungus Lasiodiplodia theobromae VBE-1. Annals of Microbiology, 65(1), 129–142. DOI: 10.1007/s13213-014-0844-9
  38. Patel, R., Prajapati, V., Trivedi, U., Patel, K. (2020). Optimization of organic solvent-tolerant lipase production by Acinetobacter sp. UBT1 using deoiled castor seed cake. 3 Biotech, 10, 1–13. DOI: 10.1007/s13205-020-02501-0
  39. Mohanasrinivasan, V., Devi, C.S., Jayasmita, D., Selvarajan, E., Jemimah Naine, S. (2018). Purification and characterization of extracellular lipase from Serratia marcescens VITSD2. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 88, 373–381. DOI: 10.1007/s40011-016-0763-6
  40. Wohlfarth, S., Hoesche, C., Strunk, C., Winkler, U.K. (1992). Molecular genetics of the extracellular lipase of Pseudomonas aeruginosa PAO1. Journal of General Microbiology, 138(7), 1325–1335. DOI: 10.1099/00221287-138-7-1325
  41. Nardini, M., Lang, D.A., Liebeton, K., Jaeger, K.-E., Dijkstra, B.W. (2000). Crystal structure of Pseudomonas aeruginosa lipase in the open conformation: the prototype for family I. 1 of bacterial lipases. Journal of Biological Chemistry, 275(40), 31219–31225. DOI: 10.1074/jbc.M003903200
  42. Wouthuyzen, S., Herandarudewi, S.M.C., Komatsu, T. (2016). Stock Assessment of Brown Seaweeds (Phaeophyceae) Along the Bitung-Bentena Coast, North Sulawesi Province, Indonesia for Alginate Product Using Satellite Remote Sensing. Procedia Environmental Sciences, 33, 553–561. DOI: 10.1016/j.proenv.2016.03.107
  43. Paques, J.P., van der Linden, E., van Rijn, C.J.M., Sagis, L.M.C. (2014). Preparation methods of alginate nanoparticles. Advances in Colloid and Interface Science, 209, 163–171. DOI: 10.1016/j.cis.2014.03.009
  44. Mohamed, S.A., Abdel-Mageed, H.M., Tayel, S.A., El-Nabrawi, M.A., Fahmy, A.S. (2011). Characterization of Mucor racemosus lipase with potential application for the treatment of cellulite. Process Biochemistry, 46(3), 642–648. DOI: 10.1016/j.procbio.2010.11.002
  45. Vetrano, A., Gabriele, F., Germani, R., Spreti, N. (2022). Characterization of lipase from Candida rugosa entrapped in alginate beads to enhance its thermal stability and recyclability. New Journal of Chemistry, 46(21), 10037–10047. DOI: 10.1039/D2NJ01160C
  46. Dey, A., Maiti, T.K., Roy, P. (2015). Improvement of the Enzymatic Performance of lipase from Pseudomonas sp. ADT3 via entrapment alginate hydrogel beads, International Journal of Scientific and Research Publications. 5(5), 56-64
  47. Priyanka, P., Kinsella, G.K., Henehan, G.T., Ryan, B.J. (2019). The effect of calcium alginate entrapment on the stability of novel lipases from P. Reinekei and P. Brenneri, Trends in Protein and Peptide Science, 4 (2019), e6. DOI: 10.22037/tpps.v4i0.26682
  48. Almeida, F.L.C., Silveira, M.P., dos Passos, R.M., da Silva, T.L., Sampaio, K.A., Vieira, M.G.A., Prata, A.S., Forte, M.B.S. (2024). What are the impacts associated with the replacement of sodium alginate with corn starch on bead formation by jet cutting? The case of Eversa Transform 2.0 immobilization. Process Biochemistry, 143, 117–127. DOI: 10.1016/j.procbio.2024.04.028
  49. Bhushan, I., Parshad, R., Qazi, G.N., Gupta, V.K. (2008). Immobilization of lipase by entrapment in Ca-alginate beads. Journal of Bioactive and Compatible Polymers, 23(6), 552–562. DOI: 10.1177/0883911508097866
  50. Haryati, T., Widhiastuty, M.P., Warganegara, F.M., Akhmaloka (2023). Immobilization of lipase Lk2 and Lk3 on NiSiO3 microspheres and the application in the synthesis of methyl esters and β-sitosteryl esters. Biocatalysis and Agricultural Biotechnology, 51, 102793. DOI: 10.1016/j.bcab.2023.102793
  51. Ognjanović, N., Šaponjić, S. V, Bezbradica, D., Knežević, Z. (2008). Lipase-catalyzed biodiesel synthesis with different acyl acceptors. Acta Periodica Technologica, (39), 161–169. DOI: 10.2298/APT0839161O
  52. Nain, P., Jaiswal, S.K., Prakash, N.T., Prakash, R., Gupta, S.K. (2020). Influence of acyl acceptor blends on the ester yield and fuel properties of biodiesel generated by whole-cell catalysis of cottonseed oil. Fuel, 259, 116258. DOI: 10.1016/j.fuel.2019.116258
  53. Kumar, D., Das, T., Giri, B.S., Rene, E.R., Verma, B. (2019). Biodiesel production from hybrid non-edible oil using bio-support beads immobilized with lipase from Pseudomonas cepacia. Fuel, 255, 115801. DOI: 10.1016/j.fuel.2019.115801
  54. Ng, C.H., Yang, K.-L. (2016). Lipase in biphasic alginate beads as a biocatalyst for esterification of butyric acid and butanol in aqueous media. Enzyme and Microbial Technology, 82, 173–179. DOI: 10.1016/j.enzmictec.2015.10.005
  55. Hidayatullah, I.M., Soetandar, F., Sudiyasa, P. V, Cognet, P., Hermansyah, H. (2023). Ion Exchange Resin and Entrapped Candida rugosa Lipase for Biodiesel Synthesis in the Recirculating Packed-Bed Reactor: A Performance Comparison of Heterogeneous Catalysts. Energies, 16(12, DOI: 10.3390/en16124765
  56. Yildiz Dalginli, K., Atakisi, O. (2023). Immobilization with Ca–Alg@ gelatin hydrogel beads enhances the activity and stability of recombinant thermoalkalophilic lipase. Chemical and Process Engineering: New Frontiers, 44(1), DOI: 10.24425/cpe.2023.142291

Last update:

No citation recorded.

Last update:

No citation recorded.