skip to main content

Synthesis of MgFe2O4 Nanoparticles and its Application for Photodegradation of Methylene Blue

1Department of Chemistry, Faculty of Science and Technology, UIN Syarif Hidayatullah Jakarta, Jl. Ir. H. Juanda No. 95, Ciputat, Tangerang Selatan 15412, Indonesia

2Research Center for Advanced Materials, National Research and Innovation Agency, KST BJ Habibie, South Tangerang 15314, Indonesia

3Department of Chemistry Education, Faculty of Tarbiya and Teaching Sciences, UIN Syarif Hidayatullah, Jl. Ir. H. Juanda No. 95, Ciputat, Tangerang Selatan 15412, Indonesia

4 Research Centre for Polymer Technology, National Research and Innovation Agency, Indonesia

5 Gedung 460, Kawasan Puspitek Serpong, Muncul, Kec. Setu, Kota Tangerang Selatan, Banten 15314, Indonesia

View all affiliations
Received: 30 Sep 2024; Revised: 21 Oct 2024; Accepted: 22 Oct 2024; Available online: 29 Oct 2024; Published: 30 Dec 2024.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2024 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Methylene blue wastewater from the paper, clothing, and textile industries can adversely affect aquatic ecosystems if improperly treated. One method to treat methylene blue pollutants in sewage is through photocatalysis techniques using magnesium ferrite (MgFe2O4) nanoparticle-based semiconductors. The MgFe2O4 is effective for methylene blue degradation because it is stable in aqueous systems, inexpensive, and has good photocatalytic activity. This study aims to synthesize MgFe2O4 nanoparticles with pumpkin seed extract (Cucurbita moschata) as a capping agent through a hydrothermal method. Characterization results show that MgFe2O4 nanoparticles synthesized with the addition of 3 mL pumpkin seed extract have a crystal size of 3.87 nm, cubic spinel structure, average particle size of 29 nm, and band gap energy value of 1.94 eV. The MgFe2O4 nanoparticles produced optimum degradation efficiency under mercury lamp irradiation with a degradation capacity of 391.98 mg/g at pH 12. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: hydrothemal; photocatalyst,;methylene blue; MgFe2O4 nanoparticles
Funding: Universitas Islam Negeri (UIN) Syarif Hidayatullah Jakarta

Article Metrics:

  1. Nunes, D., Pimentel, A., Santos, L., Barquinha, P., Pereira, L., Fortunato, E., & Martins, R. (2019). Synthesis, design, and morphology of metal oxide nanostructures. In Metal Oxide Nanostructures. DOI: 10.1016/b978-0-12-811512-1.00002-3
  2. [BPS] Badan Pusat Statistik. (2021). Statistik Indonesia. Jakarta : BPS
  3. Allouche, F.N., & Yassaa, N. (2018). Potential adsorption of methylene blue from aqueous solution using green macroalgaePosidonia oceanica. IOP Conference Series: Materials Science and Engineering, 323(1). DOI: 10.1088/1757-899X/323/1/012006
  4. Koyuncu, H., & Kul, A. R. (2020). Removal of methylene blue dye from aqueous solution by nonliving lichen (Pseudevernia furfuracea (L.) Zopf.), as a novel biosorbent. Appl. Water Science, 10, 72. DOI: 10.1007/s13201-020-1156-9
  5. Ceccaroli, B., & Lohne, O. (2011). Solar Grade Silicon Feedstock. In Handbook of Photovoltaic Science and Engineering, Second Edition (pp.169 - 217) (Issue October 2010). DOI: 10.1002/9780470974704.ch5
  6. Saeed, M., Usman, M., & Haq, A. ul. (2018). Catalytic Degradation of Organic Dyes in Aqueous Medium. Photochemistry and Photophysics - Fundamentals to Applications. DOI: 10.5772/intechopen.75008
  7. Kumar, P. S., Ramalingam, S., & Sathishkumar, K. (2011). Removal of methylene blue dye from aqueous solution by activated carbon prepared from cashew nut shell as a new low-cost adsorbent. Korean Journal of Chemical Engineering, 28(1), 149–155. DOI: 10.1007/s11814-010-0342-0
  8. Wang, P., Cao, M., Wang, C., Ao, Y., Hou, J., & Qian, J. (2014). Kinetics and thermodynamics of adsorption of methylene blue by a magnetic graphene-carbon nanotube composite. Applied Surface Science, 290, 116–124. DOI: 10.1016/j.apsusc.2013.11.010
  9. Putra, R.A., Alamsyah, W., & Indrayana, I.P.T. (2019). Characterization of microstructural and optical properties of MgFe2O4 nanoparticles for photocatalyst of mercury (Hg). Jurnal Neutrino: Jurnal Fisika dan Aplikasinya, 11(1): 1–5. DOI: 10.18860/neu.v11i1.5531
  10. Kumari, H., Sonia, Suman, Ranga, R., Chahal, S., Devi, S., Sharma, S., Kumar, S., Kumar, P., Kumar, S., Kumar, A., & Parmar, R. (2023). A review on photocatalysis used for wastewater treatment: dye degradation. In Water, Air, and Soil Pollution, 234, 6. DOI: 10.1007/s11270-023-06359-9
  11. Zahro, S.F., & Adityosulindro, S. (2023). Literature review: penggunaan bahan berbasis limbah sebagai adsorben untuk degradasi zat warna pada air limbah. Jurnal Kesehatan Lingkungan Indonesia, 22(3), 359–368. DOI: 10.14710/jkli.22.3.359-368
  12. Gopi, V., Upgade, A., & Soundararajan, N. (2012). bioremediation potential of individual and consortium non-adapted fungal strains on azo dye containing textile effluent. Pelagia Research Library. 3(1), 303–311
  13. Xue, C.Q., Zhang, J., Li, X., Chou, W., Zhang, H., Ye, Z., Cui. & Dobson, P.J. (2013). High photocatalytic activity of Fe3O4-SiO2-TiO2 functional particles with core-shell structure. Journal of Nanomaterials. 1-8. DOI: 10.1088/1742-6596/1595/1/012003
  14. Yang, X., & Wang, D. (2018). Photocatalysis: from fundamental principles to materials and applications [review-article]. ACS Applied Energy Materials, 1(12), 6657–6693. DOI: 10.1021/acsaem.8b01345
  15. Madhu, G.M., Raj, M.A.L.A., Pai, K.V.K., & Rao, S. (2007). Photodegradation of methylene blue dye using UV/ BaTiO3, UV/H2O2, and UV/ H2O2/ BaTiO3 oxidation processes, Indian Journal of Chemical Technology. 14, 139–144
  16. Al-Nuaim, M.A., Alwasiti, A.A., & Shnain, Z.Y. (2023). The photocatalytic process in the treatment of polluted water. Chemical Papers, 77(2), 677–701. DOI: 10.1007/s11696-022-02468-7
  17. Aritonang, A.B., Parwaty, P., Wibowo, M.A., Ardiningsih, P., & Adhitiyawarman, A. (2023). Sintesis TiO2-rGO dengan pereduksi alumunium untuk fotokatalisis degradasi metilen biru dibawah irradiasi sinar tampak. Equilibrium Journal of Chemical Engineering, 6(2), 150. DOI: 10.20961/equilibrium.v6i2.65518
  18. Wardhani, N. (2014). Fotokatalis TiO2-zeolit untuk degradasi metilen biru. Chemistry Progress, 7(1), 9–14. DOI: 10.35799/cp.7.1.2014.4848
  19. Garg, V. K., Sharma, V. K., & Kuzmann, E. (2016). Purifcation of water by ferrites-mini review. ACS Symposium Series, 1238 (Figure 1), 137–143. DOI: 10.1021/bk-2016-1238.ch005
  20. Kooti, M. & Sedeh, A.N. (2013). Synthesis and characterization of NiFe2O4 magnetic nanoparticles by combustion method. Journal of Materials Science and Technology. 29, 34-38. DOI: 10.1016/j.jmst.2012.11.016
  21. Shen, Y., Wu, Y., Li, X., Zhao, Q., & Hou, Y. (2013). One-pot synthesis of MgFe2O4 nanospheres by solvothermal method. Materials Letters. 96, 85–88. DOI: 10.1016/j.matlet.2013.01.023
  22. Sripriya, R.C., Mahendiran, M., Madahavan, J., & Victor Antony Raj, M. (2019). Enhanced magnetic properties of MgFe2O4 nanoparticles. Materials Today: Proceedings, 8, 310–314. DOI: 10.1016/j.matpr.2019.02.116
  23. Kaur, N., & Kaur, M. (2014). Comparative studies on impact of synthesis methods on structural and magnetic properties of magnesium ferrite nanoparticles. Processing and Application of Ceramics. 8(3), 137–143. DOI: 10.2298/PAC1403137K
  24. Tariq, A., Ullah, U., Ahmad, I., Asif, M., Sadiq, I., & Haleem, H. (2019). Comparative analysis of the magnesium ferrite (MgFe2O4) nanoparticles synthesised by three different routes. IET Nanobiotechnology, 13(7), 697–702. DOI: 10.1049/iet-nbt.2018.5032
  25. Saridewi, N., Syaputro, H.T., Aziz, I., Dasumiati, & Kumila, B.N. (2021). Synthesis and characterization of ZnO nanoparticles using pumpkin seed extract (Cucurbita moschata) by the sol-gel method. AIP Conference Proceedings, 9, 7–12. DOI: 10.1016/j.matpr.2019.02.029
  26. Saridewi, N., Komala, S., Zulys, A., Nurbayti, S., Tulhusna, L., & Adawiah, A. (2022). Synthesis of ZnO-Fe3O4 magnetic nanocomposites through sonochemical methods for methylene blue degradation. Bulletin of Chemical Reaction Engineering & Catalysis, 17(3), 650–660. DOI: 10.9767/bcrec.17.3.15492.650-660
  27. Riyanti, F., Nurhidayah, Purwaningrum, W., Yuliasari, N., & Hariani, P.L. (2023). MgFe2O4 magnetic catalyst for photocatalytic degradation of congo red dye in aqueous solution under visible light irradiation. Environment and Natural Resources Journal, 21(4), 322–332. DOI: 10.32526/ennrj/21/20230002
  28. Saridewi, N., Utami, J.D., Zulys, A., Nurbayti, S., Nurhasni, N., Adawiah, A., Putri, R.A., & Kamal, R., (2024). Utilization of lidah mertua (Sansevieria trifasciata) extract for green synthesis of ZnFe2O4 nanoparticle as visible-light responsive photocatalyst for dye degradation. Case Studies in Chemical and Environmental Engineering, 9, 100745. DOI: 10.1016/j.cscee.2024.100745
  29. Meng, L.Y., Wang, B., Ma, M.G., & Lin, K.L. (2016). The progress of microwave-assisted hydrothermal method in the synthesis of functional nanomaterials. Materials Today Chemistry, 1–2, 63–83. DOI: 10.1016/j.mtchem.2016.11.003
  30. Yuliarto, B., Septiani, N.L.W., Kaneti, Y.V., Iqbal, M., Gumilar, G., Kim, M., Na, J., Wu, K. C.W., & Yamauchi, Y. (2019). Green synthesis of metal oxide nanostructures using naturally occurring compounds for energy, environmental, and bio-related applications. New Journal of Chemistry, 43(40), 15846–15856. DOI: 10.1039/c9nj03311d
  31. Javed, R., Usman, M., Tabassum, S., & Zia, M. (2017). Effect of capping agents: Structural, optical and biological properties of ZnO nanoparticles. Applied Surface Science, 386, 319–326. DOI: 10.1016/j.apsusc.2016.06.042
  32. Jiwatami, A.M.A. (2022). Aplikasi termokopel untuk pengukuran suhu autoklaf. Lontar Physics Today, 1(1), 38–44. DOI: 10.26877/lpt.v1i1.10695
  33. Lestari, W.W., Hartono, J., Wulansari, D.W.T., Pramuja, E., Azhari, F., & Kusumaningsih, T. (2023). Pengaruh metode sintesis secara solvo-hidrotermal dan elektrokimia terhadap morfologi struktur HKUST-1 sebagai katalis heterogen dalam reaksi esterifikasi asam palmitat. ALCHEMY Jurnal Penelitian Kimia, 19(1), 1. DOI: 10.20961/alchemy.19.1.62466.1-13
  34. Rohmah, D.P.M., Hadi, S., & Baktir, A. (2019). Pemurnian parsial dan kritalisasi papain dari getah Carica papaya. Jurnal Kimia Riset, 4(2), 152–160. DOI: 10.20473/jkr.v4i2.16902
  35. Puspitasari, P., Muhammad, A., Suryanto, H., & Andoko. (2028). Magnetic properties of manganese ferrite (MnFe2O4) by co-precipitation method with different pH concentration. High Temperature Material Processes an International Quarterly of High-Technology Plasma Processes, 22 (4), 239–248. DOI: 10.1615/HighTempMatProc.2018029155
  36. Tournebize, J., Boudier, A., Joubert, O., Eidi, H., Bartosz, G., Maincent, P., Leroy, P., Sapin-Minet, A. (2012). Impact of gold nanoparticle coating on redox homeostasis. International Journal of Pharmaceutics, 438(1-2), 107-16. DOI: 10.1016/j.ijpharm.2012.07.026
  37. Reséndiz-Hernández, P.J., de Hoyos-Sifuentes, D.H., Reséndiz-Flores, E.O., Ochoa-Palacios, R.M. & Altamirano-Guerrero, G. (2023). Synthesis of pure MgFe2O4 nanoparticles: an intelligent prediction approach and experimental validation, Journal of Sol-Gel Science and Technology. 107, 620–628. DOI: 10.1007/s10971-023-06168-w
  38. Naaz, F., Dubey, H.K., Kumari, C., & Lahiri, P. (2020). Structural and magnetic properties of MgFe2O4 nanopowder synthesized via co-precipitation route. SN Applied Sciences, 2(5), 1–8. DOI: 10.1007/s42452-020-2611-9
  39. Didik, L.A. (2020). Penentuan ukuran butir kristal CuCr0,98Ni0,02O2 dengan Menggunakan X-Ray Difraction (XRD) dan Scanning Electron Microscope (SEM). Indonesian Physical Review. 3(1), 6–14. DOI: 10.29303/ipr.v3i1.37
  40. Masruroh., Manggara, B.A., Lapailaka, T., & Tjahjanto, T.R. (2013). Penentuan ukuran kristal (crystallite size) lapisan tipis PZT dengan metode XRD melalui pendekatan persamaan Debye Scherrer, Journal of Educational Innovation. 1(2). DOI: 10.18551/erudio.1-2.4
  41. Prabhakaran, T., Mangalaraja, R.V., Denardin, J.C., & Varaprasad, K. (2018). The effect of capping agents on the structural and magnetic properties of cobalt ferrite nanoparticles. Journal of Materials Science: Materials in Electronics, 29(14), 11774–11782. DOI: 10.1007/s10854-018-9276-9
  42. Rathinavel, S., Deepika, R., Dhananjaya, P. and Manikandan, A. (2020). Synthesis and characterization of MgFe2O4 and MgFe2O4/rGO nanocomposites for the photocatalytic degradation of methylene blue. Inorganic and Nano-Metal Chemistry. 2(1), 1-9. DOI: 10.1080/24701556.2020.1771590
  43. Aliyan, N., Mirkazemi, S.M., Masoudpanah, S. M. & Akhari, S. (2017). The effect of post-calcination on cation distributions and magnetic properties of the coprecipitated MgFe2O4 nanoparticles. Applied Physics A Material Science and Processing. 2(1), 446-503. DOI: 10.1007/s00339-017-1053-8
  44. Cheng, M., Zeng, G., Huang, D., Lai, C., Wei, Z., Li, N., Xu, P., Zhang, C., Zhu, Y., & He, X. (2015). Combined biological removal of methylene blue from aqueous solutions using rice straw and Phanerochaete chrysosporium. Applied Microbiology and Biotechnology, 99(12), 5247–5256. DOI: 10.1007/s00253-014-6344-9
  45. Eljiedi, A. A. A. & Kamari, A., (2017). Removal of methyl orange and methylene blue dyes from aqueous solution using lala clam (Orbicularia orbiculata) shell. AIP Conf. Proc., 1847(1): 40003. DOI: 10.1063/1.4983899
  46. Wang, S. & Zhu, Z. (2007). Effects of acidic treatment of activated carbons on dye adsorption. Dye. Pigment., 75, 306-314, DOI: 10.1016/j.dyepig.2006.06.005
  47. Umpuch, C. & Sakaew, S., (2013). Removal of methyl orange from aqueous solutions by adsorption using chitosan intercalated montmorillonite. Songklanakarin Journal of Science and Technology, 35(4), 451-459
  48. Permata, G. D., Diantariani, P. N., & Widihati, G. A. I. (2016). Degradasi fotokatalitik fenol menggunakan fotokatalis ZnO dan sinar UU. Jurnal Kimia, 10(2), 263-269. DOI: 10.24843/jchem.2016.v10.i02.p13
  49. Nikazar, M., Gholivand, K., & Mahanpoor, K. 2007. Using TiO2 supported on clinoptilolite as a catalyst for photocatalytic degradation of azo dye disperse yellow 23 in water. Kinetics and Catalysis. 48(2), 214-220. DOI: 10.1134/S002315840702005X
  50. Makofane, A., Motaung, D.E., & Hintsho-mbita, N.C. (2021). Photocatalytic degradation of methylene blue and sulfisoxazole from water using biosynthesized zinc ferrite nanoparticles. Ceramics International, 47 (16), 22615-22626. DOI: 10.1016/j.ceramint.2021.04.274
  51. Dong, H., Zeng, G., Tang, L., Fan, C., Zhang, C., He, X., He, Y. 2015. An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Research. 79, 128–146. DOI: 10.1016/j.watres.2015.04.038
  52. Abdollahi, Y., Abdullah, A.H., Zainal, Z., Yusof, N.A. (2011). Photodegradation of M-cresol by zinc oxide under visible-light irradiation. International Journal of Molecular Sciences. 13(1), 302-15. DOI: 10.3390/ijms13010302
  53. Soukeur, A., Kaci, M.M., Omeiri, S., Bellal, B., Amara, M., & Trari, M. (2023). Photocatalytic degradation of bromothymol blue over MgFe2O4 under sunlight exposure. Optical Materials. 142 (2023) 114108. DOI: 10.1016/j.optmat.2023.114108
  54. Jarariya, R., & Suresh, K. (2023). Spinel ferrite nanomaterials- MgFe2O4- Synthesis by appropriate microwave solution combustion (MSC) method of visible light–responsive photocatalyst for Rb21 dye degradation. Materials Today: Proceedings. 72 (2023), 2618–2629. DOI: 10.1016/j.matpr.2022.07.393
  55. El Khawaga, A.M., Ayman, M., Hafez, O., & Shalaby, R.E. (2024). Photocatalytic, antimicrobial and antibiofilm activities of MgFe2O4 magnetic nanoparticles. Scientific Reports. 14 (2024) 12877. DOI: 10.1038/s41598-024-62868-5

Last update:

No citation recorded.

Last update:

No citation recorded.