skip to main content

Enhanced Removal Efficiency of Malachite Green Dye Using Gambir Leaf Extract-Modified NiFe LDH Composites: A Study of Cationic Dye Adsorption

1Master Program of Materials Science, Graduate School, Universitas Sriwijaya, Palembang 30139, Indonesia, Indonesia

2Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Ogan Ilir 30862, Indonesia, Indonesia

3Research Center of Inorganic Materials and Coordination Complexes, Universitas Sriwijaya, Palembang 30139, Indonesia, Indonesia

Received: 24 Sep 2024; Revised: 31 Oct 2024; Accepted: 1 Nov 2024; Available online: 3 Nov 2024; Published: 30 Dec 2024.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2024 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

A NiFe layered double hydroxide (LDH) composite with Uncaria gambir (UG) leaf extract was successfully synthesized. The composite (NiFe-UG LDH) and the base material (NiFe LDH) were identified using X-ray Diffraction (XRD), Fourier Transform Infra Red (FTIR), and Brunauer-Emmett-Teller (BET) Surface Area techniques. The XRD and FTIR results revealed the incorporation of gambier leaf extract into the NiFe LDH structure, as indicated by the combined diffraction patterns and spectral features. The BET analysis indicated a decrease in the surface area of NiFe-UG LDH compared to that of NiFe LDH, suggesting that active compounds from the gambier leaf extract effectively coated the LDH surface and blocked its pores. During malachite green (MG) adsorption, NiFe-UG demonstrated faster adsorption kinetics and a higher adsorption efficiency, reaching 96.420% compared to 92.085% for NiFe LDH. While both materials followed pseudo-first-order kinetics, their isotherm behaviors differed: NiFe-UG adhered to the Langmuir model, indicating monolayer adsorption, whereas NiFe LDH followed the Freundlich model, signifying multilayer adsorption. Further analysis suggested that adsorption in NiFe LDH was primarily governed by physisorption, while in NiFe-UG, a combined physisorption-chemisorption mechanism occurred. These results underscore the enhanced adsorption capacity of the composite material, attributed to the introduction of additional functional groups from the gambier leaf extract. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: NiFe LDH; Uncaria gambir; Malachite Green; Physisorption-Chemisorption; Composite
Funding: Universitas Sriwijaya

Article Metrics:

  1. Ayuz Firstian Adjid, G., Kurniawan, A. (2022). Textile Industry Waste Pollution in the Konto River: A Comparison of Public Perceptions and Water Quality Data. The Journal of Experimental Life Science, 12 (3), 105–113. DOI: 10.21776/ub.jels.2022.012.03.05
  2. Ahmad Khan, F., Dar, B.A., Farooqui, M. (2023). Characterization and Adsorption of Malachite Green Dye from Aqueous Solution onto Salix alba L. (Willow Tree) Leaves Powder and Its Respective Biochar. International Journal of Phytoremediation, 25(5), 646–657. DOI: 10.1080/15226514.2022.2098909
  3. Abewaa, M., Mengistu, A., Takele, T., Fito, J., Nkambule, T. (2023). Adsorptive Removal of Malachite Green Dye from Aqueous Solution Using Rumex abyssinicus Derived Activated Carbon. Scientific Reports, 13(1). DOI: 10.1038/s41598-023-41957-x
  4. Palapa, N.R., Amri, A., Hanifah, Y. (2023). Potential Indonesian Rice Husk for Wastewater Treatment Agricultural Waste Preparation and Dye Removal Application. Indonesian Journal of Environmental Management and Sustainability, 7 (4), 160–165. DOI: 10.26554/ijems.2023.7.4.160-165
  5. De Almada Vilhena, A.O., Lima, K.M.M., De Azevedo, L.F.C., Rissino, J.D., De Souza, A.C.P., Nagamachi, C.Y., Pieczarka, J.C. (2023). The Synthetic Dye Malachite Green Found in Food Induces Cytotoxicity and Genotoxicity in Four Different Mammalian Cell Lines from Distinct Tissuesw. Toxicology Research, 12(4), 693–701. DOI: 10.1093/toxres/tfad059
  6. Sharma, J., Sharma, S., Soni, V. (2023). Toxicity of Malachite Green on Plants and Its Phytoremediation: A Review. Regional Studies in Marine Science, 62, 102911. DOI: 10.1016/J.RSMA.2023.102911
  7. Sadegh, N., Haddadi, H., Sadegh, F., Asfaram, A. (2023). Recent Advances and Perspectives of Tannin-Based Adsorbents for Wastewater Pollutants Elimination: A Review. Environmental Nanotechnology, Monitoring & Management, 19, 100763. DOI: 10.1016/j.enmm.2022.100763
  8. Pathy, A., Krishnamoorthy, N., Chang, S.X., Paramasivan, B. (2022). Malachite Green Removal Using Algal Biochar and Its Composites with Kombucha SCOBY: An Integrated Biosorption and Phycoremediation Approach. Surfaces and Interfaces, 30, 101880. DOI: 10.1016/j.surfin.2022.101880
  9. Hussien Hamad, M.T.M. (2023). Optimization Study of the Adsorption of Malachite Green Removal by MgO Nano-Composite, Nano-Bentonite and Fungal Immobilization on Active Carbon Using Response Surface Methodology and Kinetic Study. Environmental Sciences Europe, 35(1). DOI: 10.1186/s12302-023-00728-1
  10. Abbas, M., Trari, M. (2023). Contribution of Zeolite to Remove Malachite Green in Aqueous Solution by Adsorption Processes: Kinetics, Isotherms and Thermodynamic Studies. Textile Research Journal, 93(15–16), 3765–3776. DOI: 10.1177/00405175231165336
  11. Yuliasari, N., Wijaya, A., Mohadi, R., Elfita, E., Lesbani, A. (2022). Photocatalytic Degradation of Malachite Green by Layered Double Hydroxide Based Composites. Bulletin of Chemical Reaction Engineering and Catalysis, 17 (2), 240–249. DOI: 10.9767/bcrec.17.2.13482.240-249
  12. Mohapi, M., Sefadi, J.S., Mochane, M.J., Magagula, S.I., Lebelo, K. (2020). Effect of LDHs and Other Clays on Polymer Composite in Adsorptive Removal of Contaminants: A Review. Crystals, 10(11). DOI: 10.3390/cryst10110957
  13. Farhan, A., Khalid, A., Maqsood, N., Iftekhar, S., Sharif, H.M.A., Qi, F., Sillanpää, M., Asif, M.B. (2024). Progress in Layered Double Hydroxides (LDHs): Synthesis and Application in Adsorption, Catalysis and Photoreduction. Science of The Total Environment, 912, 169160. DOI: 10.1016/j.scitotenv.2023.169160
  14. Hanifah, Y., Amri, A. (2023). Preparation of Layered Double Hydroxide-Polyoxometalate Based Composite. Indonesian Journal of Material Research, 1(2), 68–73. DOI: 10.26554/ijmr.20231210
  15. Wang, Y., Yan, D., El Hankari, S., Zou, Y., Wang, S. (2018). Recent Progress on Layered Double Hydroxides and Their Derivatives for Electrocatalytic Water Splitting. Advanced Science, 5 (8), 1800064. DOI: https://doi.org/10.1002/advs.201800064
  16. Palapa, N.R., Saria, Y., Taher, T., Mohadi, R., Lesbani, A. (2019). Synthesis and Characterization of Zn/Al, Zn/Fe, and Zn/Cr Layered Double Hydroxides: Effect of M3+ Ions Toward Layer Formation. Science and Technology Indonesia, 4 (2), 36–39. DOI: 10.26554/sti.2019.4.2.36-39
  17. Mittal, J. (2021). Recent Progress in the Synthesis of Layered Double Hydroxides and Their Application for the Adsorptive Removal of Dyes: A Review. Journal of Environmental Management, 295, 113017. DOI: 10.1016/j.jenvman.2021.113017
  18. Nava-Andrade, K., Carbajal-Arízaga, G.G., Obregón, S., Rodríguez-González, V. (2021). Layered Double Hydroxides and Related Hybrid Materials for Removal of Pharmaceutical Pollutants from Water. Journal of Environmental Management, 288, 112399. DOI: 10.1016/j.jenvman.2021.112399
  19. Ahmad, N., Suryani Arsyad, F., Royani, I., Mega Syah Bahar Nur Siregar, P., Taher, T., Lesbani, A. (2023). High Regeneration of ZnAl/NiAl-Magnetite Humic Acid for Adsorption of Congo Red from Aqueous Solution. Inorganic Chemistry Communications, 150, 110517. DOI: 10.1016/j.inoche.2023.110517
  20. Wibiyan, S., Royani, I., Ahmad, N., Lesbani, A. (2024). Assessing the Efficiency, Selectivity, and Reusability of ZnAl-Layered Double Hydroxide and Eucheuma cottonii Composite in Removing Anionic dyes from wastewater. Inorganic Chemistry Communications, 170, 113347. DOI: 10.1016/j.inoche.2024.113347
  21. Lesbani, A., Ahmad, N., Mohadi, R., Royani, I., Wibiyan, S., Amri, Hanifah, Y. (2024). Selective Adsorption of Cationic Dyes by Layered Double Hydroxide with Assist Algae (Spirulina platensis) to Enrich Functional Groups. JCIS Open, 15, 100118. DOI: 10.1016/j.jciso.2024.100118
  22. Malrianti, Y., Kasim, A., Asben, A., Syafri, E., Yeni, G., Fudholi, A. (2021). Catechin Extracted from Uncaria gambier Roxb for Nanocatechin Production: Physical and Chemical Properties. International Journal of Design and Nature and Ecodynamics, 16 (4), 393–399. DOI: 10.18280/ijdne.160406
  23. Cai, Z.-Y., Li, X.-M., Liang, J.-P., Xiang, L.-P., Wang, K.-R., Shi, Y.-L., Yang, R., Shi, M., Ye, J.-H., Lu, J.-L., Zheng, X.-Q., Liang, Y.-R. (2018). Bioavailability of Tea Catechins and Its Improvement. Molecules, 23 (9) DOI: 10.3390/molecules23092346
  24. Li, H.Z., Zhang, Y.N., Guo, J.Z., Lv, J.Q., Huan, W.W., Li, B. (2021). Preparation of Hydrochar with High Adsorption Performance for Methylene Blue by Co-Hydrothermal Carbonization of Polyvinyl Chloride and Bamboo. Bioresource Technology, 337, 125442. DOI: 10.1016/j.biortech.2021.125442
  25. Pramanik, F., Satari, M.H., Azhari, A. (2023). Cytotoxic Activity of Gambier Leave (Uncaria gambir) Ethyl Acetate Extract on Mouse Embryonic Fibroblast Cell (NIH-3T3) using MTT Assay. The Open Dentistry Journal, 17(1). DOI: 10.2174/18742106-v17-e230109-2022-78
  26. Failisnur, F., Sofyan, S., Kasim, A., Angraini, T. (2018). Study of Cotton Fabric Dyeing Process with Some Mordant Methods by Using Gambier (Uncaria gambir Roxb) Extract. International Journal on Advanced Science, Engineering and Information Technology, 8(4), 1098–1104. DOI: 10.18517/ijaseit.8.4.4861
  27. Wu, L., Yu, L., Zhang, F., Wang, D., Luo, D., Song, S., Yuan, C., Karim, A., Chen, S., Ren, Z. (2020). Facile Synthesis of Nanoparticle-Stacked Tungsten-Doped Nickel Iron Layered Double Hydroxide Nanosheets for Boosting Oxygen Evolution Reaction. Journal of Materials Chemistry A, 8(16), 8096–8103. DOI: 10.1039/D0TA00691B
  28. Qian, J., Zhang, Y., Chen, Z., Du, Y., Ni, B.J. (2023). NiCo Layered Double Hydroxides/NiFe Layered Double Hydroxides Composite (NiCo-LDH/NiFe-LDH) Towards Efficient Oxygen Evolution in Different Water Matrices. Chemosphere, 345, 140472. DOI: 10.1016/j.chemosphere.2023.140472
  29. Lesbani, A., Paruship, V., Rizki, M.F., Taher, T., Palapa, N.R., Mohadi, R. (2019). Preparation of M2+/M3+ Layered Double Hydroxides (M2+=Zn, Ni, M3+=Fe): Effect of Different M2+ to the Layer Formation. In: AIP Conference Proceedings. American Institute of Physics Inc., p. 020055. DOI: 10.1063/1.5139787
  30. Liu, X., Shi, J., Bai, X., Wu, W. (2021). Ultrasound-Excited Hydrogen Radical from NiFe Layered Double Hydroxide for Preparation of Ultrafine Supported Ru Nanocatalysts in Hydrogen Storage of N-Ethylcarbazole. Ultrasonics Sonochemistry, 81, 105840. DOI: 10.1016/j.ultsonch.2021.105840
  31. Munonde, T.S., Zheng, H. (2021). The Impact of Ultrasonic Parameters on the Exfoliation of NiFe LDH Nanosheets as Electrocatalysts for the Oxygen Evolution Reaction in Alkaline Media. Ultrasonics Sonochemistry, 76, 105664. DOI: 10.1016/j.ultsonch.2021.105664
  32. Shiyan, S., Safitri, I.N., Nathasia, J., Fitrotunnisa, L., Fransiska, O.L., Salsabillah, T., Pratiwi, G. (2023). FTIR Spectroscopy Combined with Chemometrics for Evaluation of Gambir Extract – Self Nano Emulsifying Formulation from Uncaria gambir Roxb. Biointerface Research in Applied Chemistry, 13(2), 1–11. DOI: 10.33263/briac132.153
  33. Taylor, J.H., Masoudi Soltani, S. (2023). Carbonaceous Adsorbents in the Removal of Aquaculture Pollutants: A Technical Review of Methods and Mechanisms. Ecotoxicology and Environmental Safety, 266, 115552. DOI: 10.1016/j.ecoenv.2023.115552
  34. Mane, P. V, Rego, R.M., Yap, P.L., Losic, D., Kurkuri, M.D. (2024). Unveiling Cutting-Edge Advances in High Surface Area Porous Materials for the Efficient Removal of Toxic Metal Ions from Water. Progress in Materials Science, 146, 101314. DOI: 10.1016/j.pmatsci.2024.101314
  35. Ashraf, M.A., Peng, W., Zare, Y., Rhee, K.Y. (2018). Effects of Size and Aggregation/Agglomeration of Nanoparticles on the Interfacial/Interphase Properties and Tensile Strength of Polymer Nanocomposites. Nanoscale Research Letters, 13, 214. DOI: 10.1186/s11671-018-2624-0
  36. Arab, C., El Kurdi, R., Patra, D. (2022). Effect of pH on the Removal of Anionic and Cationic Dyes Using Zinc Curcumin Oxide Nanoparticles as Adsorbent. Materials Chemistry and Physics, 277, 125504. DOI: 10.1016/j.matchemphys.2021.125504
  37. Ahmad, N., Rohmatullaili, Wijaya, A., Lesbani, A. (2024). Magnetite Humic Acid-Decorated MgAl Layered Double Hydroxide and its Application in Procion Red Adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 684 DOI: 10.1016/j.colsurfa.2023.133042
  38. Wijaya, A., Zahara, A.Z., Siregar, P.M.S.B.N., Ahmad, N., Amri, A., Palapa, N.R., Lesbani, A. (2024). Cellulose-supported Ni/Al Layered Double Hydroxide (LDH) as Unique Adsorbents for Malachite Green Dye Removal in Aqueous Solutions. Iranian of Journal Chemistry and Chemical Engineering, 43 (4), 1566. DOI: 10.30492/ijcce.2024.1983141.5779
  39. Amri, A., Lesbani, A., Mohadi, R. (2023). Malachite Green Dye Adsorption from Aqueous Solution using a Ni/Al Layered Double Hydroxide-Graphene Oxide Composite Material. Science and Technology Indonesia, 8(2), 280–287. DOI: 10.26554/sti.2023.8.2.280-287
  40. Shkliarenko, Y., Halysh, V., Nesterenko, A. (2023). Adsorptive Performance of Walnut Shells Modified with Urea and Surfactant for Cationic Dye Removal. Water (Switzerland), 15(8), 1536. DOI: 10.3390/w15081536
  41. Saadi, A.S., Bousba, S., Riah, A., Belghit, M., Belkhalfa, B., Barour, H. (2024). Efficient Synthesis of Magnetic Activated Carbon from Oak Pericarp for Enhanced Dye Adsorption: A One-Step Approach. Desalination and Water Treatment, 319, 100420. DOI: 10.1016/j.dwt.2024.100420
  42. Saleh, T.A. (2022). Kinetic Models and Thermodynamics of Adsorption Processes: Classification. Interface Science and Technology, 34, 65–97. DOI: 10.1016/B978-0-12-849876-7.00003-8
  43. Brahma, D., Saikia, H. (2022). Synthesis of ZrO2/MgAl-LDH Composites and Evaluation of Its Isotherm, Kinetics and Thermodynamic Properties in the Adsorption of Congo Red Dye. Chemical Thermodynamics and Thermal Analysis, 7, 100067. DOI: 10.1016/j.ctta.2022.100067
  44. Chen, X., Ren, Y., Qu, G., Wang, Z., Yang, Y., Ning, P. (2023). A Review of Environmental Functional Materials for Cyanide Removal by Adsorption and Catalysis. Inorganic Chemistry Communications, 157, 111298. DOI: 10.1016/j.inoche.2023.111298
  45. Badri, A.F., Mohadi, R., Mardiyanto, Lesbani, A. (2021). Adsorptive Capacity of Malachite Green onto Mg/M3+(M3+=Al and Cr) Ldhs. Global Nest Journal, 23(1), 82–89. DOI: 10.30955/gnj.003443
  46. Lesbani, A., Taher, T., Palapa, N.R., Mohadi, R., Mardiyanto, Miksusanti, Arsyad, F.S. (2021). Removal of Malachite Green Dye Using keggin Polyoxometalate Intercalated ZnAl Layered Double Hydroxide. Walailak Journal of Science and Technology, 18(10), 9414. DOI: 10.48048/wjst.2021.9414
  47. Abewaa, M., Mengistu, A., Takele, T., Fito, J., Nkambule, T. (2023). Adsorptive Removal of Malachite Green dye from Aqueous Solution Using Rumex abyssinicus Derived Activated Carbon. Scientific Reports, 13(1), 14701. DOI: 10.1038/s41598-023-41957-x
  48. Rosenholm, J.B. (2017). Critical Evaluation of Dipolar, Acid-Base and Charge interactions I. Electron Displacement within and Between Molecules, Liquids and Semiconductors. Advances in Colloid and Interface Science, 247, 264–304. DOI: 10.1016/j.cis.2017.06.004
  49. Lu, H., Qi, Y., Zhao, Y., Jin, N. (2018). Effects of Hydroxyl Group on the Interaction of Carboxylated Flavonoid Derivatives with S. Cerevisiae α-Glucosidase. Current Computer-Aided Drug Design, 16(1), 31–44. DOI: 10.2174/1573409914666181022142553
  50. Das, T., Debnath, A., Manna, M.S. (2024). Adsorption of Malachite Green by Aegle marmelos-Derived Activated Biochar: Novelty Assessment through Phytotoxicity Tests and Economic Analysis. Journal of the Indian Chemical Society, 101(9), 101219. DOI: 10.1016/j.jics.2024.101219
  51. Muinde, V.M., Onyari, J.M., Wamalwa, B., Wabomba, J., Nthumbi, R.M. (2017). Adsorption of Malachite Green from Aqueous Solutions onto Rice Husks: Kinetic and Equilibrium Studies. Journal of Environmental Protection, 08(03), 215–230. DOI: 10.4236/jep.2017.83017
  52. Rajabi, M., Mahanpoor, K., Moradi, O. (2019). Preparation of PMMA/GO and PMMA/GO-Fe3O4 Nanocomposites for Malachite Green Dye Adsorption: Kinetic and Thermodynamic Studies. Composites Part B: Engineering, 167, 544–555. DOI: 10.1016/j.compositesb.2019.03.030
  53. Banerjee, S., Debsarkar, Dr.A., Datta, Dr.S. (2017). Adsorption of Methylene blue and Malachite Green in Aqueous Solution using Jack Fruit Leaf Ash as Low Cost Adsorbent. International Journal of Environment, Agriculture and Biotechnology, 2(3), 1396–1374. DOI: 10.22161/ijeab/2.3.45
  54. Abate, G.Y., Alene, A.N., Habte, A.T., Getahun, D.M. (2020). Adsorptive Removal of Malachite Green Dye from Aqueous Solution onto Activated Carbon of Catha edulis Stem as a Low Cost Bio-Adsorbent. Environmental Systems Research, 9(1), 1. DOI: 10.1186/s40068-020-00191-4
  55. Savci, S., Dönmez, S., Mazmanci, M.A. (2023). Performance and Mechanisms of Malachite Green Dye Adsorption Using Industrial Solid Waste as Adsorbent. Environmental Engineering and Management Journal, 22(1), 97–104. DOI: 10.30638/eemj.2023.009
  56. Potgieter, J., Waanders, F.B., Fosso-Kankeu, E. (2019). Removal of Malachite Green and Toluidine Blue Dyes from Aqueous Solution Using a Clay-Biochar Composite of Bentonite and Sweet Sorghum bagasse. International Journal of Applied Engineering Research, 14(6), 1324–1333

Last update:

No citation recorded.

Last update:

No citation recorded.