skip to main content

Fabrication of Zn and Ti-loaded Carbon-silica Composite Derived from Gelatin Template for the Photodegradation of Methylene Blue

Chemistry Education Study Program, Faculty of Teacher Training and Education, Sebelas Maret University, Jl. Ir. Sutami 36A, Surakarta 57126, Indonesia

Received: 13 Aug 2024; Revised: 10 Sep 2024; Accepted: 12 Sep 2024; Available online: 14 Sep 2024; Published: 30 Oct 2024.
Editor(s): Rodiansono Rodiansono
Open Access Copyright (c) 2024 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Carbon-silica nanocomposites (CSNs) from gelatin as a carbon source and natural template and TEOS as a silica source have been successfully synthesized and impregnated into ZnO and TiO2 photocatalysts. The structural, morphological, and textural properties and photocatalytic activity for methylene blue degradation of TiO2/CSNs and ZnO/CSNs were investigated. XRD data revealed that TiO2/CSNs and ZnO/CSNs had different structural characteristics with similar crystallinity. FTIR spectra demonstrated the presence of Zn–O and Ti–OC bonds, respectively, at about 500-450 cm-1 and 1500 cm-1. The morphological surface exhibited stacked tubular shapes of TiO2/CSNs and ZnO/CSNs with the primary elements of Ti, Zn, Si, C, and O. The nitrogen adsorption-desorption curves revealed both micropores and mesopores of TiO2/CSNs and ZnO/CSNs where the surface area reduced due to the blocking pore after impregnation. Moreover, ZnO/CSNs verified a higher degradation percentage against methylene blue than that of TiO2/CSNs. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: carbon-silica; composite; gelatin; photodegradation; Zinc; Titania; Methylene blue
Funding: International Collaboration Grant 2024 of Universitas Sebelas Maret under contract 194.2/UN27.22/PT.01.03/2024

Article Metrics:

  1. Ulfa, M., Nur, C., Amalia, N. (2023). Fine-tuning mesoporous silica properties by a dual-template ratio as TiO2 support for dye photodegradation booster. Heliyon, 9(6), e16275. DOI: 10.1016/j.heliyon.2023.e16275
  2. Essa, W.K., Yasin, S.A., Abdullah, A.H., Thalji, M.R., Saeed, I.A., Assiri, M.A., Chong, K.F., Ali, G.A.M. (2022). Polyethylene Terephthalate Nanofiber-Multi-Walled Carbon Nanotube Composite. Water, 25, DOI: 10.3390/w14081242
  3. Safri, A., Fletcher, A.J. (2022). Effective Carbon/TiO2 Gel for Enhanced Adsorption and Demonstrable Visible Light Driven Photocatalytic Performance. Gels, 8(4) DOI: 10.3390/gels8040215
  4. Chen, B., Zhang, X., Zhang, X., Lin, Q. (2020). Facile preparation of ultrathin-wall graphitic mesoporous carbon containing graphene sheets with desirable adsorption performance for organic dyes. Journal of Molecular Liquids, 319, 114306. DOI: 10.1016/j.molliq.2020.114306
  5. Gao, Z.Z., Qi, N., Chen, W.J., Zhao, H. (2022). Construction of hydroxyethyl cellulose/silica/graphitic carbon nitride solid foam for adsorption and photocatalytic degradation of dyes. Arabian Journal of Chemistry, 15 (9), 1-16. DOI: 10.1016/j.arabjc.2022.104105
  6. Prasetyoko, D., Sholeha, N.A., Subagyo, R., Ulfa, M., Bahruji, H., Holilah, H., Pradipta, M.F., Jalil, A.A. (2023). Mesoporous ZnO nanoparticles using gelatin - Pluronic F127 as a double colloidal system for methylene blue photodegradation. Korean, J. Chem. Eng. 40(1), 112–123. DOI: 10.1007/s11814-022-1224-y
  7. Ulfa, M., Pangestuti, I., Anggreani, C.N. (2024). Physicochemical Characteristics of Titania Particles Synthesized with Gelatin as a Template Before and After Regeneration and Their Performance in Photocatalytic Methylene Blue. Bulletin of Chemical Reaction Engineering & Catalysis, 19(2), 242–251. DOI: 10.9767/bcrec.20138
  8. Chanhom, P., Charoenlap, N., Tomapatanaget, B., Insin, N. (2017). Colloidal titania-silica-iron oxide nanocomposites and the effect from silica thickness on the photocatalytic and bactericidal activities. Journal of Magnetism and Magnetic Materials, 427(June), 54–59. DOI: 10.1016/j.jmmm.2016.10.123
  9. Cani, D., Waal, J.C. Van Der, Pescarmona, P.P. (2021). Highly accessible, doped TiO2 nanoparticles embedded at the surface of SiO2 as photocatalysts for the degradation of pollutants under visible and UV radiation. Applied Catalysis A: General, 621(April), 118179. DOI: 10.1016/j.apcata.2021.118179
  10. Vasu, P., Reddy, G., Rajendra, B., Reddy, P., Venkata, M., Reddy, K., Raghava, K., Shetti, N.P., Saleh, T.A., Aminabhavi, T.M. (2020). A review on multicomponent reactions catalysed by zero-dimensional / one-dimensional titanium dioxide (TiO2) nanomaterials : Promising green methodologies in organic chemistry. Journal of Environmental Management, 279, 111603. DOI: 10.1016/j.jenvman.2020.111603
  11. Albiss, B., Abu-Dalo, M. (2021). Photocatalytic degradation of methylene blue using zinc oxide nanorods grown on activated carbon fibers. Sustainability (Switzerland), 13(9) DOI: 10.3390/su13094729
  12. Li, J., Han, L., Zhang, T., Qu, C., Yu, T., Yang, B. (2022). Removal of Methylene Blue by Metal Oxides Supported by Oily Sludge Pyrolysis Residues. Applied Sciences (Switzerland), 12(9) DOI: 10.3390/app12094725
  13. Barakat, M.A., Kumar, R., Eniola, J.O. (2021). Adsorption and photocatalytic scavenging of 2-chlorophenol using carbon nitride-titania nanotubes based nanocomposite: Experimental data, kinetics and mechanism. Data in Brief, 34, 106664. DOI: 10.1016/j.dib.2020.106664
  14. Raizada, P., Soni, V., Kumar, A., Singh, P., Parwaz Khan, A.A., Asiri, A.M., Thakur, V.K., Nguyen, V.H. (2021). Surface defect engineering of metal oxides photocatalyst for energy application and water treatment. Journal of Materiomics, 7 (10), 1-17, DOI 10.1016/j.jmat.2020.10.009
  15. Waghchaure, R.H., Adole, V.A., Jagdale, B.S. (2022). Photocatalytic degradation of methylene blue, rhodamine B, methyl orange and Eriochrome black T dyes by modified ZnO nanocatalysts: A concise review. Inorganic Chemistry Communications, 143 (109764), 1–15. DOI: 10.1016/j.inoche.2022.109764
  16. Li, X., Zhang, L. (2022). Adsorption of Methylene Blue on TiO2/SiO2 Prepared by Chemical Vapor Deposition. Russian Journal of Physical Chemistry A, 96(6), 1304–1313. DOI: 10.1134/S0036024422060309
  17. Ulfa, M., Al Afif, H., Saraswati, T.E., Bahruji, H. (2022). Fast Removal of Methylene Blue via Adsorption-Photodegradation on TiO2/SBA-15 Synthesized by Slow Calcination. Materials, 15(16), 1–13. DOI: 10.3390/ma15165471
  18. Assaker, K., Carteret, C., Stébé, M.J., Blin, J.L. (2014). Multi-techniques investigation of mesoporous zinc and tungsten titanates materials. Microporous and Mesoporous Materials, 194, 208–218. DOI: 10.1016/j.micromeso.2014.03.044
  19. Gholami, P., Khataee, A., Ritala, M. (2022). Template-free hierarchical trimetallic oxide photocatalyst derived from organically modified ZnCuCo layered double hydroxide. Journal of Cleaner Production, 366(February), 132761. DOI: 10.1016/j.jclepro.2022.132761
  20. Zawrah, M.F., Alhogbi, B.G. (2021). Preparation and characterization of SiO2@C nanocomposites from rice husk for removal of heavy metals from aqueous solution. Ceramics International, 47(16), 23240–23248. DOI: 10.1016/j.ceramint.2021.05.036
  21. Chandrasekar, G., Son, W.J., Ahn, W.S. (2009). Synthesis of mesoporous materials SBA-15 and CMK-3 from fly ash and their application for CO2 adsorption. J. Porous Mater. 16, 545-551. DOI: 10.1007/s10934-008-9231-x
  22. Guo, R., Guo, J., Yu, F., Gang, D.D. (2013). Synthesis and surface functional group modifications of ordered mesoporous carbons for resorcinol removal. Microporous and Mesoporous Materials, 175, 141–146. DOI: 10.1016/j.micromeso.2013.03.028
  23. Sevilla, M., Fuertes, A.B. (2006). Catalytic graphitization of templated mesoporous carbons. Carbon, 44(3), 468–474. DOI: 10.1016/j.carbon.2005.08.019
  24. Leyva-García, S., Lozano-Castelló, D., Morallón, E., Cazorla-Amorós, D. (2016). Silica-templated ordered mesoporous carbon thin films as electrodes for micro-capacitors. Journal of Materials Chemistry A, 4(12), 4570–4579. DOI: 10.1039/c5ta10552h
  25. Zhao, W., Zhang, H., He, Q., Han, L., Wang, T., Guo, F., Wang, W. (2022). Controllable synthesis of porous silicate@carbon heterogeneous composite from Coal Gangue waste as eco-friendly superior scavenger of dyes. Journal of Cleaner Production, 363 (October 2021), 132466. DOI: 10.1016/j.jclepro.2022.132466
  26. Ulfa, M., Prasetyoko, D., Mahadi, A.H., Bahruji, H. (2020). Size tunable mesoporous carbon microspheres using Pluronic F127 and gelatin as co-template for removal of ibuprofen. Science of the Total Environment, 711, 135066. DOI: 10.1016/j.scitotenv.2019.135066
  27. Ulfa, M., Pertiwi, Y.E., Saraswati, T.E., Bahruji, H., Holilah, H. (2023). Synthesis of iron triad metals-modified graphitic mesoporous carbon for methylene blue photodegradation. South African Journal of Chemical Engineering, 45 (May), 149–161. DOI: 10.1016/j.sajce.2023.05.008
  28. Xu, X., Wang, H., Xie, Y., Liu, J., Yan, H., Liu, W. (2018). Graphitized Mesoporous Carbon Derived from ZIF-8 for Suppressing Sulfation in Lead Acid Battery and Dendritic Lithium Formation in Lithium Ion Battery. Journal of The Electrochemical Society, 165(13), A2978–A2984. DOI: 10.1149/2.0361813jes
  29. Induchoodan, G., Jansson, H., Swenson, J. (2021). Influence of graphene oxide on asphaltene nanoaggregates. Colloids Surfaces A Physicochem. Eng. Asp. 630, 630, 127614, 1-13, DOI: 10.1016/j.colsurfa.2021.127614
  30. Buscarino, G., Vaccaro, G., Agnello, S., Gelardi, F.M. (2009). Variability of the Si-O-Si angle in amorphous-SiO2 probed by electron paramagnetic resonance and Raman spectroscopy. Journal of Non-Crystalline Solids, 355(18–21), 1092–1094. DOI: 10.1016/j.jnoncrysol.2008.12.017
  31. Rueda-Márquez, J.J., Palacios-Villarreal, C., Manzano, M., Blanco, E., Ramírez del Solar, M., Levchuk, I. (2020). Photocatalytic degradation of pharmaceutically active compounds (PhACs) in urban wastewater treatment plants effluents under controlled and natural solar irradiation using immobilized TiO2. Solar Energy, 208(August), 480–492. DOI: 10.1016/j.solener.2020.08.028
  32. Ediati, R., Ulfa, M., Fansuri, H., Ramli, Z., Nur, H. (2014). Influence of TiOO2/TS-1 Calcination on Hydroxylation of Phenol. J. Fund. Math, Sci. 46(1), 76–90. DOI: 10.5614/j.math.fund.sci.2014.46.1.7
  33. Maimunawaro, Rahman, S.K., Rampun, E.L.A., Rahma, A., Elma, M. (2020). Deconvolution of carbon silica templated thin film using ES40 and P123 via rapid thermal processing method. Materials Today: Proceedings, 31, 75–78. DOI: 10.1016/j.matpr.2020.01.195
  34. Awadh, S.M., Yaseen, Z.M. (2019). Investigation of silica polymorphs stratified in siliceous geode using FTIR and XRD methods. Materials Chemistry and Physics, 228 (February), 45–50. DOI: 10.1016/j.matchemphys.2019.02.048
  35. Stobinski, L., Lesiak, B., Malolepszy, A., Mazurkiewicz, M., Mierzwa, B., Zemek, J., Jiricek, P., Bieloshapka, I. (2014). Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. Journal of Electron Spectroscopy and Related Phenomena, 195, 145–154. DOI: 10.1016/j.elspec.2014.07.003
  36. Luan, Z., Fournier, J.A. (2005). In situ FTIR spectroscopic investigation of active sites and adsorbate interactions in mesoporous aluminosilicate SBA-15 molecular sieves. Microporous and Mesoporous Materials, 79(1–3), 235–240. DOI: 10.1016/j.micromeso.2004.11.012
  37. Sapawe, N., Ariff Rustam, M., Hafizan Hakimin Mahadzir, M., Kamal Ezzat Mohamad Lani, M., Raidin, A., Farhan Hanafi, M. (2019). A Novel Approach of In-Situ Electrobiosynthesis of Metal Oxide Nanoparticles Using Crude Plant Extract as Main Medium for Supporting Electrolyte. Materials Today: Proceedings, 19, 1441–1445. DOI: 10.1016/j.matpr.2019.11.166
  38. Qaseem, S., Dlamini, D.S., Zikalala, S.A., Tesha, J.M., Husain, M.D., Wang, C., Jiang, Y., Wei, X., Vilakati, G.D., Li, J. (2020). Electro-catalytic membrane anode for dye removal from wastewater. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 603 (February), 125270. DOI: 10.1016/j.colsurfa.2020.125270
  39. Shilpa, G., Mohan Kumar, P., Kishore Kumar, D., Deepthi, P.R., Sukhdev, A., Bhaskar, P. (2022). A rutile phase-TiO2 film via a facile hydrothermal method for photocatalytic methylene blue dye decolourization. Materials Today: Proceedings, 62, 5477–5482. DOI: 10.1016/j.matpr.2022.04.148
  40. Liu, X., Wang, G., Zhi, H., Dong, J., Hao, J., Zhang, X., Wang, J., Li, D., Liu, B. (2022). Synthesis of the Porous ZnO Nanosheets and TiO2/ZnO/FTO Composite Films by a Low-Temperature Hydrothermal Method and Their Applications in Photocatalysis and Electrochromism. Coatings, 12(5) DOI: 10.3390/coatings12050695
  41. Wu, M., Shi, L., Lim, T.T., Veksha, A., Yu, F., Fan, H., Mi, J. (2018). Ordered mesoporous Zn-based supported sorbent synthesized by a new method for high-efficiency desulfurization of hot coal gas. Chemical Engineering Journal, 353(July), 273–287. DOI: 10.1016/j.cej.2018.07.134
  42. Saad, A.M., Abukhadra, M.R., Abdel-Kader Ahmed, S., Elzanaty, A.M., Mady, A.H., Betiha, M.A., Shim, J.J., Rabie, A.M. (2020). Photocatalytic degradation of malachite green dye using chitosan supported ZnO and Ce–ZnO nano-flowers under visible light. Journal of Environmental Management, 258, 110043. DOI: 10.1016/j.jenvman.2019.110043
  43. Jayanthi Kalaivani, G., Suja, S.K. (2016). TiO2 (rutile) embedded inulin - A versatile bio-nanocomposite for photocatalytic degradation of methylene blue. Carbohydrate Polymers, 143, 51–60. DOI: 10.1016/j.carbpol.2016.01.054
  44. Fatimah, I., Prakoso, N.I., Sahroni, I., Musawwa, M.M., Sim, Y.L., Kooli, F., Muraza, O. (2019). Physicochemical characteristics and photocatalytic performance of TiO2/SiO2 catalyst synthesized using biogenic silica from bamboo leaves. Heliyon, 5(11), e02766. DOI: 10.1016/j.heliyon.2019.e02766
  45. Wang, Y., Lu, Y., Luo, R., Zhang, Y., Guo, Y., Yu, Q., Liu, X., Kim, J.K., Luo, Y. (2018). Densely-stacked N-doped mesoporous TiO2/carbon microsphere derived from outdated milk as high-performance electrode material for energy storages. Ceramics International, 44(14), 16265–16272. DOI: 10.1016/j.ceramint.2018.06.020

Last update:

No citation recorded.

Last update:

No citation recorded.