skip to main content

Gelatin's Effect on Iron Oxide Nanoparticle Properties and Its Use in Thermal Regeneration for Methylene Blue Photodegradation

Chemistry Education Study Program, Faculty of Teacher Training and Education, Sebelas Maret University, Jl. Ir. Sutami 36A, Surakarta 57126, Indonesia

Received: 18 Jun 2024; Revised: 1 Aug 2024; Accepted: 1 Aug 2024; Available online: 7 Aug 2024; Published: 30 Oct 2024.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2024 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Two series of iron oxide nanoparticles with different textural and structural characteristics were synthesized using the sol-gel method. The iron oxide nanoparticles were made with synthetic (Pluronic P123 Amphiphilic Block Copolymer) and natural (gelatin) double templates and single P123 templates. The influences of the addition of the gelatin template on the microstructure, methylene blue degradation, and thermal photocatalyst regeneration were investigated. The X-ray Diffraction (XRD) examination revealed the formation of iron-P123-gelatin (iron oxide made with P123 and gelatin templates) and iron-P123 (iron oxide made with only P123 template) with hematite and maghemite phases, where the crystallinity and crystallite size increased due to the presence of gelatin. Fourier Transform Infra Red (FTIR) studies indicated a peak at 500 cm−1, revealing the iron groups in both samples and increased intensity in the hydroxyl and carbonyl groups due to gelatin. Furthermore, the surface area, pore volume, and pore diameter of iron-P123-gelatin exhibited an increment due to gelatin addition. According to the Thermogravimetric Analysis (TGA) and Differential Thermal Analyzer (DTA) data, the sample with gelatin had higher thermal stability and weight loss than that without gelatin. The photodegradation of methylene blue utilizing iron-P123-gelatin reached 91.5%, showing a better performance than that of iron-P123. Finally, iron-P123-gelatin demonstrated a promising photocatalyst thermal regeneration for methylene blue photodegradation for 5 cycles at various temperatures, and it is suggested that 450 °C was the ideal temperature. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: iron oxide; gelatin; P123; photocatalyst; regeneration
Funding: Universitas Sebelas Maret under contract 194.2/UN27.22/PT.01.03/2024

Article Metrics:

  1. M.R., Saeed, I.A., Assiri, M.A., Chong, K.F., Ali, G.A.M. (2022). Taguchi L25 (54) Approach for Methylene Blue Removal by Polyethylene Terephthalate Nanofiber-Multi-Walled Carbon Nanotube Composite. Water, 14(8), 1242. DOI: 10.3390/w14081242
  2. Lines, MG. (2008). Nanomaterials for practical functional uses. Journal of Alloys and Compounds, 449(1-2), 242-245. DOI: 10.1016/j.jallcom.2006.02.082
  3. Safri, A., Fletcher, A.J. (2022). Effective Carbon/TiO(2) Gel for Enhanced Adsorption and Demonstrable Visible Light Driven Photocatalytic Performance. Gels, 8(4), 215. DOI: 10.3390/gels8040215
  4. Gao, Z.-Z., Qi, N., Chen, W.-J., Zhao, H. (2022). Construction of hydroxyethyl cellulose/silica/graphitic carbon nitride solid foam for adsorption and photocatalytic degradation of dyes. Arabian Journal of Chemistry, 15(9), 104105. DOI: 10.1016/j.arabjc.2022.104105
  5. Thi, T.P.T., Nguyen, D.T., Duong, T.Q., Luc, H.H., Vo, V. (2013). Facile Postsynthesis of N-Doped TiO2-SBA-15 and Its Photocatalytic Activity. Advances in Materials Science and Engineering, 2013, 638372. DOI: 10.1155/2013/638372
  6. Ulfa, M., Anggreani, C.N., Sholeha, N.A. (2023). Fine-tuning mesoporous silica properties by a dual-template ratio as TiO2 support for dye photodegradation booster. Heliyon, 9(6), e16275. DOI: 10.1016/j.heliyon.2023.e16275
  7. Kann, Y., Shurgalin, M., Krishnaswamy, R.K. (2014). FTIR spectroscopy for analysis of crystallinity of poly(3-hydroxybutyrate-co-4 -hydroxybutyrate) polymers and its utilization in evaluation of aging, orientation and composition. Polymer Testing, 40, 218-224. DOI: 10.1016/j.polymertesting.2014.09.009
  8. Melzig, S., Niedbalka, D., Schilde, C., Kwade, A. (2018). Spray drying of amorphous ibuprofen nanoparticles for the production of granules with enhanced drug release. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 536, 133-141. DOI: 10.1016/j.colsurfa.2017.07.028
  9. Molinari, R., Lavorato, C., Argurio, P. (2017). Recent progress of photocatalytic membrane reactors in water treatment and in synthesis of organic compounds. A review. Catalysis Today, 281, 144-164. DOI: 10.1016/j.cattod.2016.06.047
  10. Show, S., Chakraborty, P., Karmakar, B., Halder, G. (2021). Sorptive and microbial riddance of micro-pollutant ibuprofen from contaminated water: A state of the art review. Science of The Total Environment, 786, 147327. DOI: 10.1016/j.scitotenv.2021.147327
  11. Zavala, M.A.L., Morales, S.A.L., Avila-Santos, M. (2017). Synthesis of stable TiO2 nanotubes: effect of hydrothermal treatment, acid washing and annealing temperature. Heliyon, 3(11), e00456. DOI: 10.1016/j.heliyon.2017.e00456
  12. McCarron, E., Chambers, G. (2021). A review of suitable analytical technology for physio-chemical characterisation of nanomaterials in the customs laboratory. Talanta Open, 4, 100069. DOI: 10.1016/j.talo.2021.100069
  13. Mizuno, S., Yao, H. (2021). On the electronic transitions of α-Fe2O3 hematite nanoparticles with different size and morphology: Analysis by simultaneous deconvolution of UV–vis absorption and MCD spectra. Journal of Magnetism and Magnetic Materials, 517, 167389. DOI: 10.1016/j.jmmm.2020.167389
  14. Sugrañez, R., Balbuena, J., Cruz-Yusta, M., Martín, F., Morales, J., Sánchez, L. (2015). Efficient behaviour of hematite towards the photocatalytic degradation of NO gases. Applied Catalysis B: Environmental, 165, 529-536. DOI: 10.1016/j.apcatb.2014.10.025
  15. Ulfa, M., Prasetyoko, D., Bahruji, H., Nugraha, R.E. (2021). Green Synthesis of Hexagonal Hematite (alpha-Fe2O3) Flakes Using Pluronic F127-Gelatin Template for Adsorption and Photodegradation of Ibuprofen. Materials, 14(22), 6779. DOI: 10.3390/ma14226779
  16. Mahlaule-Glory, L.M., Mapetla, S., Makofane, A., Mathipa, M.M., Hintsho-Mbita, N.C. (2022). Biosynthesis of iron oxide nanoparticles for the degradation of methylene blue dye, sulfisoxazole antibiotic and removal of bacteria from real water. Heliyon, 8(9), e10536. DOI: 10.1016/j.heliyon.2022.e10536
  17. Abid, M.A., Abid, D.A., Aziz, W.J., Rashid, T.M. (2021). Iron oxide nanoparticles synthesized using garlic and onion peel extracts rapidly degrade methylene blue dye. Physica B: Condensed Matter, 622, 413277. DOI: 10.1016/j.physb.2021.413277
  18. Kumar, S., Kumar, M., Singh, A. (2022). Synthesis and characterization of iron oxide nanoparticles (Fe2O3, Fe3O4): a brief review. Contemporary Physics, 62(3), 144-164. DOI: 10.1080/00107514.2022.2080910
  19. Priya, P., Naveen, N., Kaur, K., Sidhu, A.K. (2021). Green Synthesis: An Eco-friendly Route for the Synthesis of Iron Oxide Nanoparticles. Frontiers in Nanotechnology, 3, 655062. DOI: 10.3389/fnano.2021.655062
  20. Sharma, P., Holliger, N., Pfromm, P.H., Liu, B., Chikan, V. (2020). Size-Controlled Synthesis of Iron and Iron Oxide Nanoparticles by the Rapid Inductive Heating Method. ACS Omega, 5(31), 19853-19860. DOI: 10.1021/acsomega.0c02793
  21. Parida, D., Salmeia, K.A., Sadeghpour, A., Zhao, S., Maurya, A.K., Assaf, K.I., Moreau, E., Pauer, R., Lehner, S., Jovic, M., Cordula, H., Gaan, S. (2021). Template-free synthesis of hybrid silica nanoparticle with functionalized mesostructure for efficient methylene blue removal. Materials & Design, 201, 109494. DOI: 10.1016/j.matdes.2021.109494
  22. Ulfa, M., Prasetyoko, D., Bahruji, H., Nugraha, R.E. (2021). Green synthesis of Hexagonal Hematite (α-Fe2O3) flakes using Pluronic F127-Gelatin template for adsorption and photodegradation of ibuprofen. Materials, 14, 6779. DOI: 10.3390/ma14226779
  23. Ulfa, M., Istanti, S.A. (2022). Synthesis of Mesoporous Silica Incorporated with Low Iron Concentration and Gelatin Co-Template via The Ultrasonication Method and Its Methylene Blue Photodegradation Performance. Bulletin of Chemical Reaction Engineering & Catalysis, 17(4), 831-838. DOI: 10.9767/bcrec.17.4.16210.831-838
  24. Lee, S.-H., Kotal, M., Oh, J.-H., Sennu, P., Park, S.-H., Lee, Y.-S., Oh, I.-K. (2017). Nanohole-structured, iron oxide-decorated and gelatin-functionalized graphene for high rate and high capacity Li-Ion anode. Carbon, 119, 355-364. DOI: 10.1016/j.carbon.2017.04.031
  25. Gomes, A.L.M., Andrade, P.H.M., Palhares, H.G., Dumont, M.R., Soares, D.C.F., Volkringer, C., Houmard, M., Nunes, E.H.M. (2021). Facile sol–gel synthesis of silica sorbents for the removal of organic pollutants from aqueous media. Journal of Materials Research and Technology, 15, 4580-4594. DOI: 10.1016/j.jmrt.2021.10.069
  26. Paul, D.R., Sharma, R., Nehra, S.P., Sharma, A. (2019). Effect of calcination temperature, pH and catalyst loading on photodegradation efficiency of urea derived graphitic carbon nitride towards methylene blue dye solution. RSC Advances, 9(27), 15381–15391. DOI: 10.1039/c9ra02201e
  27. Wang, Y., Sun, X., Xian, T., Liu, G., Yang, H. (2021). Photocatalytic purification of simulated dye wastewater in different pH environments by using BaTiO3/Bi2WO6 heterojunction photocatalysts. Optical Materials, 113, 110853. DOI: 10.1016/j.optmat.2021.110853

Last update:

No citation recorded.

Last update:

No citation recorded.