skip to main content

Modulation of the Microstructure and Enhancement of the Photocatalytic Performance of g-C3N4 by Thermal Exfoliation

1School of Chemistry and Environmental Science, Yili Normal University, 835000, Yining, China

2School of Materials and Chemical Engineering, Xuzhou University of Technology, 221018, Xuzhou, China

Received: 21 Jul 2024; Revised: 16 Aug 2024; Accepted: 16 Aug 2024; Available online: 8 Sep 2024; Published: 30 Oct 2024.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2024 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

 

This work explores the impact of reaction temperature during thermal exfoliation treatment of bulk-g-C3N4 in the air atmosphere on the structure and performance of the resulting CN photocatalyst. The analysis conducted using XRD, FT-IR, XPS, SEM, and elements mapping tests, illustrated an increase in nitrogen-vacancy and oxygen content on the surface of the CN photocatalyst, resulting in a porous and sparse structure, changes in crystal size, and improved visible light absorption performance. The photocatalytic reduction experiments of hexavalent chromium (Cr(VI)) showed that the CN-540 showed the highest reduction rate of 96.9%, with a reaction rate constant 6.21 times that of bulk-g-C3N4. After 100 min of illumination, the photocatalytic degradation rates of CN-540 for TC-HCl and RhB were 66.7% and 60.6%, respectively. The TOC test results indicated mineralization rates of 51.5% for TC-HCl and 46.6% for RhB. Room temperature fluorescence spectroscopy (PL), transient photocurrent response (TPC), and electrochemical impedance spectroscopy (EIS) measurements confirmed the excellent photogenerated charge carrier separation and transport efficiency of CN-540. The photocatalytic mechanism for reducing Cr(VI) by CN-540 was elucidated based on the active species •OH and •O2 and Mott-Schottky (M-S) tests. This study provides experimental data for optimizing the photocatalytic performance of g-C3N4 and paves a new way for developing efficient photocatalysts. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Supporting Information (SI) PDF
Keywords: Graphitic Carbon Nitride; Thermal Exfoliation; Photocatalytic Reduction; Cr(VI); Photo-induced Charge Carriers
Funding: Natural Natural Science Foundation of China under contract No. 22202169; Science and Technology Project of Xuzhou under contract No KC21286; Innovation and entrepreneurship projects for college students under contract xcx2024002

Article Metrics:

  1. Zhu, J., Zhang, Y., Shen, L., Li, J., Li, L., Zhang, F., Zhang, Y. (2022). Hydrothermal synthesis of Nb5+-doped SrTiO3 mesoporous nanospheres with greater photocatalytic efficiency for Cr(VI) reduction. Powder Technology, 410, 117886. DOI: 10.1016/j.powtec.2022.117886
  2. Huang, Q., Hu, J., Hu, Y., Liu, J., He, J., Zhou, G., Hu, N., Yang, Z., Zhang, Y., Zhou, Y., Zou, Z. (2022). Simultaneously enhanced photocatalytic cleanup of Cr(VI) and tetracycline via a ZnIn2S4 nanoflake-decorated 24-faceted concave MIL-88B (Fe) polyhedron S-scheme system. Environmental Science: Nano, 9(12), 4433-4444. DOI: 10.1039/d2en00781a
  3. Yan, X., Zhang, N., Liu, Z., Du, C. (2024). Two-step calcination synthesis of 1T/2H mixed-phase MoS2/g-C3N4 with sulfur defects for efficient removal of Cr(VI) from water. Journal of Molecular Structure, 1300, 137262. DOI: 10.1016/j.molstruc.2023.137262
  4. Wei, H., Wen, Y., Zhang, Y. (2017). Nitric acid-assisted one-step solvothermal synthesis of visible-light-active N-doped ThO2 for use as a potential photocatalyst in the reduction of Cr(VI). Catalysis Communications, 99, 66-70. DOI: 10.1016/j.catcom.2017.05.030
  5. Wang, C., Yang, G., Shi, W., Matras-Postolek, K., Yang, P. (2021). Construction of 2D/2D MoS2/g-C3N4 heterostructures for photoreduction of Cr(VI). Langmuir, 37(20), 6337-6346. DOI: 10.1021/acs.langmuir.1c00929
  6. Zhang, Y., Liu, C., Nian, P., Ma, H., Hou, J., Zhang, Y. (2024). Facile preparation of high-performance hydrochar/TiO2 heterojunction visible light photocatalyst for treating Cr(VI)-polluted water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 681, 132775. DOI: 10.1016/j.colsurfa.2023.132775
  7. Chen, Y., Li, A., Fu, X., Peng, Z. (2022). One-step calcination to gain exfoliated g-C3N4/MoO2 composites for high-performance photocatalytic hydrogen evolution. Molecules, 27(21), 7178. DOI: 10.3390/molecules27217178
  8. Yang, Y., Yan, J., Zhang, Y., Xing, S., Ran, J., Ma, Y., Li, X. (2024). S/P co-doped g-C3N4 with secondary calcination for excellent photocatalytic performance. International Journal of Hydrogen Energy, 51, 962-974. DOI: 10.1016/j.ijhydene.2023.09.083
  9. Yu, Q., Xu, Q., Li, H., Yang, K., Li, X. (2019). Effects of heat treatment on the structure and photocatalytic activity of polymer carbon nitride. Journal of Materials Science, 54(23), 14599-14608. DOI: 10.1007/s10853-019-03895-w
  10. Rehman, Z. U., Bilal, M., Butt, F. K., Rehman, S. U., Asghar, Z., Zheng, K., Zhang, Y., Xu, X., Hou, J., Wang, X. (2024). Selenium doping to improve internal electric field for excellent photocatalytic efficiency of g-C3N4 nanosheets. Separation and Purification Technology, 350, 128001. DOI: 10.1016/j.seppur.2024.128001
  11. Nguyen, T. T. A., Dao, T. C. V., Vu, A. T. (2024). Controlling the physical properties of Ag/ZnO/g-C3N4 nanocomposite by the calcination procedure for enhancing the photocatalytic efficiency. Ceramics International, 50(9), 14292-14306. DOI: 10.1016/j.ceramint.2024.01.336
  12. Wang, T., Yang, W., Chang, L., Wang, H., Wu, H., Cao, J., Fan, H., Wang, J., Liu, H., Hou, Y., Zhang, R., Yang, Z., Zhu, H., Kong, C. (2022). One-step calcination synthesis of accordion-like MXene-derived TiO2@C coupled with g-C3N4: Z-scheme heterojunction for enhanced photocatalytic NO removal. Separation and Purification Technology, 285, 120329. DOI: 10.1016/j.seppur.2021.120329
  13. Zhang, X., Yuan, L., Zhang, Y., Shu, X., Li, R., Deng, Q., Zhang, Z., Yang, R. (2024). Synthesis and photocatalytic performance investigation of an NH4Cl-assisted two-step calcination method for modified gC3N4. Reaction Chemistry & Engineering. DOI: 10.1039/d4re00151f
  14. Cao, R., Yuan, H., Yang, N., Lu, Q., Xue, Y., Zeng, X. (2024). Enhanced photocatalytic hydrogen production utilizing few-layered 1T-WS2/g-C3N4 heterostructures prepared with one-step calcination route. Fuel, 357, 129808. DOI: 10.1016/j.fuel.2023.129808
  15. Zhang, Q., Liu, S., Zhang, Y., Zhu, A., Li, J., Du, X. (2016). Enhancement of the photocatalytic activity of g-C3N4 via treatment in dilute NaOH aqueous solution. Materials Letters, 171, 79-82. DOI: 10.1016/j.matlet.2016.02.043
  16. De Medeiros, T. V., Porto, A. O., Bicalho, H. A., González, J. C., Naccache, R., Teixeira, A. P. C. (2021). The effects of chemical and thermal exfoliation on the physico-chemical and optical properties of carbon nitrides. Journal of Materials Chemistry C, 9(24), 7622-7631. DOI: 10.1039/d1tc01734a
  17. Nguyen, T. K. A., Pham, T. T., Gendensuren, B., Oh, E. S., Shin, E. W. (2022). Defect engineering of water-dispersible g-C3N4 photocatalysts by chemical oxidative etching of bulk g-C3N4 prepared in different calcination atmospheres. Journal of Materials Science & Technology, 103, 232-243. DOI: 10.1016/j.jmst.2021.07.013
  18. Liu, S., Sun, H., Ang, H. M., Tade, M. O., Wang, S. (2016). Integrated oxygen-doping and dye sensitization of graphitic carbon nitride for enhanced visible light photodegradation. Journal of colloid and interface science, 476, 193-199. DOI: 10.1016/j.jcis.2016.05.026
  19. Yu, Q., Xu, Q., Li, H., Yang, K., Li, X. (2019). Effects of heat treatment on the structure and photocatalytic activity of polymer carbon nitride. Journal of Materials Science, 54(23), 14599-14608. DOI: 10.1007/s10853-019-03895-w
  20. Kang, X., Kang, Y., Hong, X., Sun, Z., Zhen, C., Hu, C., Liu, G., Cheng, H. (2018). Improving the photocatalytic activity of graphitic carbon nitride by thermal treatment in a high-pressure hydrogen atmosphere. Progress in Natural Science: Materials International, 28(2), 183-188. DOI: 10.1016/j.pnsc.2018.02.006
  21. Yu H., Yu Z., Chen F., Li W., Qi L., Zhu F., Zhu B., Zhang S, Zhao Z, Zheng J. (2024). Optimization of Ag single atom dispersed graphitic carbon nitride for enhanced catalytic performance in the degradation of rhodamine B and tetracycline. Materials Research Bulletin, 170, 112553. DOI: 10.1016/j.materresbull.2023.112553
  22. Mishra K. P., Gogate P. R. (2010). Intensification of degradation of Rhodamine B using hydrodynamic cavitation in the presence of additives. Separation and Purification Technology, 75(3), 385-391. DOI: 10.1016/j.seppur.2010.09.008
  23. Nie Y., Zhao C., Zhou Z., Kong Y, Ma J. (2023). Hydrochloric acid-modified fungi-microalgae biochar for adsorption of tetracycline hydrochloride: Performance and mechanism. Bioresource Technology, 383, 129224, DOI: 10.1016/j.biortech.2023.129224
  24. Ma C., Aryee A. A., Zhu K., Wang R., Han R. (2024). Adsorption and catalytic degradation of tetracycline hydrochloride by HCNTs /MnFe2O4. Journal of Environmental Chemical Engineering, 12, 113156. DOI: 10.1016/j.jece.2024.113156
  25. Guo, F., Shi, W., Wang, H., Huang, H., Liu, Y., Kang, Z. (2017). Fabrication of a CuBi2O4/g-C3N4 p–n heterojunction with enhanced visible light photocatalytic efficiency toward tetracycline degradation. Inorganic Chemistry Frontiers, 4(10), 1714-1720. DOI: 10.1039/c7qi00402h
  26. Hosseini, S. F., Dorraji, M. S. S., Rasoulifard, M. H. (2023). Boosting photo-charge transfer in 3D/2D TiO2@Ti3C2 MXene/Bi2S3 Schottky/Z-scheme heterojunction for photocatalytic antibiotic degradation and H2 evolution. Composites Part B: Engineering, 262, 110820. DOI: 10.1016/j.compositesb.2023.110820
  27. Li, S., Zhao, W., **ong, D., Ye, Y., Ma, J., Gu, Y. (2023). g-C3N4/TiO2 uniformly distributed microspheres: preparation for enhanced photocatalytic performance by co-calcination. Journal of Materials Science: Materials in Electronics, 34(1), 47. DOI: 10.1007/s10854-022-09391-3
  28. Niu, P., Qiao, M., Li, Y., Huang, L., Zhai, T. (2018). Distinctive defects engineering in graphitic carbon nitride for greatly extended visible light photocatalytic hydrogen evolution. Nano Energy, 44, 73-81. DOI: 10.1016/j.nanoen.2017.11.059
  29. Wu, J., Li, N., Fang, H. B., Li, X., Zheng, Y. Z., Tao, X. (2019). Nitrogen vacancies modified graphitic carbon nitride: Scalable and one-step fabrication with efficient visible-light-driven hydrogen evolution. Chemical Engineering Journal, 358, 20-29. DOI: 10.1016/j.cej.2018.09.208
  30. Yu, Y., Chen, D., Xu, W., Fang, J., Sun, J., Liu, Z., Chen, Y., Liang, Y., Fang, Z. (2021). Synergistic adsorption-photocatalytic degradation of different antibiotics in seawater by a porous g-C3N4/calcined-LDH and its application in synthetic mariculture wastewater. Journal of hazardous materials, 416, 126183. DOI: 10.1016/j.jhazmat.2021.126183
  31. Yu, Q., Xu, Q., Li, H., Yang, K., Li, X. (2019). Effects of heat treatment on the structure and photocatalytic activity of polymer carbon nitride. Journal of Materials Science, 54(23), 14599-14608. DOI: 10.1007/s10853-019-03895-w
  32. Bai, Y., Mao, W., Wu, Y., Gao, Y., Wang, T., & Liu, S. (2021). Synthesis of novel ternary heterojunctions via Bi2WO6 coupling with CuS and g-C3N4 for the highly efficient visible-light photodegradation of ciprofloxacin in wastewater. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 610, 125481. DOI: 10.1016/j.colsurfa.2020.125481
  33. Paramanik, L., Subudhi, S., Parida, K. M. (2022). Visible light active titanate perovskites: An overview on its synthesis, characterization and photocatalytic applications. Materials Research Bulletin, 155, 111965. DOI: 10.1016/j.materresbull.2022.111965
  34. Pang X., Xue S., Zhou T., Xu Q., Lei W. (2022). 2D/2D nanohybrid of Ti3C2 MXene/WO3 photocatalytic membranes for efficient water purification. Ceramics International, 48, 3659–3668. DOI: 10.1016/j.ceramint.2021.10.147
  35. Liu K., Zhang H., Fu T., Wang L., Tang R., Tong Z., Huang X. (2022). Construction of BiOBr/Ti3C2/exfoliated montmorillonite Schottky junction: New insights into exfoliated montmorillonite for inducing MXene oxygen functionalization and enhancing photocatalytic activity. Chemical Engineering Journal, 438, 135609. DOI: 10.1016/j.cej.2022.135609

Last update:

No citation recorded.

Last update:

No citation recorded.