1School of Chemistry and Environmental Science, Yili Normal University, 835000, Yining, China
2School of Materials and Chemical Engineering, Xuzhou University of Technology, 221018, Xuzhou, China
BibTex Citation Data :
@article{BCREC20189, author = {Xinshan Zhao and Junwei Yu and Tingyu Meng and Yuanyuan Luo and Yanzhen Fu and Zhao Li and Lin Tian and Limei Sun and Jing Li}, title = {Modulation of the Microstructure and Enhancement of the Photocatalytic Performance of g-C3N4 by Thermal Exfoliation}, journal = {Bulletin of Chemical Reaction Engineering & Catalysis}, volume = {19}, number = {3}, year = {2024}, keywords = {Graphitic Carbon Nitride; Thermal Exfoliation; Photocatalytic Reduction; Cr(VI); Photo-induced Charge Carriers}, abstract = { This work explores the impact of reaction temperature during thermal exfoliation treatment of bulk-g-C 3 N 4 in the air atmosphere on the structure and performance of the resulting CN photocatalyst. The analysis conducted using XRD, FT-IR, XPS, SEM, and elements mapping tests, illustrated an increase in nitrogen-vacancy and oxygen content on the surface of the CN photocatalyst, resulting in a porous and sparse structure, changes in crystal size, and improved visible light absorption performance. The photocatalytic reduction experiments of hexavalent chromium (Cr(VI)) showed that the CN-540 showed the highest reduction rate of 96.9%, with a reaction rate constant 6.21 times that of bulk-g-C 3 N 4 . After 100 min of illumination, the photocatalytic degradation rates of CN-540 for TC-HCl and RhB were 66.7% and 60.6%, respectively. The TOC test results indicated mineralization rates of 51.5% for TC-HCl and 46.6% for RhB. Room temperature fluorescence spectroscopy (PL), transient photocurrent response (TPC), and electrochemical impedance spectroscopy (EIS) measurements confirmed the excellent photogenerated charge carrier separation and transport efficiency of CN-540. The photocatalytic mechanism for reducing Cr(VI) by CN-540 was elucidated based on the active species •OH and •O 2 – and Mott-Schottky (M-S) tests. This study provides experimental data for optimizing the photocatalytic performance of g-C 3 N 4 and paves a new way for developing efficient photocatalysts. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License ( https://creativecommons.org/licenses/by-sa/4.0 ). }, issn = {1978-2993}, pages = {442--454} doi = {10.9767/bcrec.20189}, url = {https://journal.bcrec.id/index.php/bcrec/article/view/20189} }
Refworks Citation Data :
This work explores the impact of reaction temperature during thermal exfoliation treatment of bulk-g-C3N4 in the air atmosphere on the structure and performance of the resulting CN photocatalyst. The analysis conducted using XRD, FT-IR, XPS, SEM, and elements mapping tests, illustrated an increase in nitrogen-vacancy and oxygen content on the surface of the CN photocatalyst, resulting in a porous and sparse structure, changes in crystal size, and improved visible light absorption performance. The photocatalytic reduction experiments of hexavalent chromium (Cr(VI)) showed that the CN-540 showed the highest reduction rate of 96.9%, with a reaction rate constant 6.21 times that of bulk-g-C3N4. After 100 min of illumination, the photocatalytic degradation rates of CN-540 for TC-HCl and RhB were 66.7% and 60.6%, respectively. The TOC test results indicated mineralization rates of 51.5% for TC-HCl and 46.6% for RhB. Room temperature fluorescence spectroscopy (PL), transient photocurrent response (TPC), and electrochemical impedance spectroscopy (EIS) measurements confirmed the excellent photogenerated charge carrier separation and transport efficiency of CN-540. The photocatalytic mechanism for reducing Cr(VI) by CN-540 was elucidated based on the active species •OH and •O2– and Mott-Schottky (M-S) tests. This study provides experimental data for optimizing the photocatalytic performance of g-C3N4 and paves a new way for developing efficient photocatalysts. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Article Metrics:
Last update:
In order for Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group to publish and disseminate research articles, we need non-exclusive publishing rights (transfered from author(s) to publisher). This is determined by a publishing agreement between the Author(s) and Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group. This agreement deals with the transfer or license of the copyright of publishing to Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group, while Authors still retain significant rights to use and share their own published articles. Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group supports the need for authors to share, disseminate and maximize the impact of their research and these rights, in any databases.
As a journal Author, you have rights for a large range of uses of your article, including use by your employing institute or company. These Author rights can be exercised without the need to obtain specific permission. Authors publishing in BCREC journals have wide rights to use their works for teaching and scholarly purposes without needing to seek permission, including:
Authors/Readers/Third Parties can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (the name of the creator and attribution parties (authors detail information), a copyright notice, an open access license notice, a disclaimer notice, and a link to the material), provide a link to the license, and indicate if changes were made (Publisher indicates the modification of the material (if any) and retain an indication of previous modifications using a CrossMark Policy and information about Erratum-Corrigendum notification).
Authors/Readers/Third Parties can read, print and download, redistribute or republish the article (e.g. display in a repository), translate the article, download for text and data mining purposes, reuse portions or extracts from the article in other works, sell or re-use for commercial purposes, remix, transform, or build upon the material, they must distribute their contributions under the same license as the original Creative Commons Attribution-ShareAlike (CC BY-SA).
The Authors submitting a manuscript do so on the understanding that if accepted for publication, non-exclusive right for publishing (publishing right) of the article shall be assigned/transferred to Publisher of Bulletin of Chemical Reaction Engineering & Catalysis journal (Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group).
Upon acceptance of an article, authors will be asked to complete a 'Copyright Transfer Agreement for Publishing (CTAP)'. An e-mail will be sent to the Corresponding Author confirming receipt of the manuscript together with a 'Copyright Transfer Agreement for Publishing' form by online version of this agreement.
Bulletin of Chemical Reaction Engineering & Catalysis journal and Masyarakat Katalis Indonesia-Indonesian Catalyst Society (MKICS), the Editors and the Advisory International Editorial Board make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in the Bulletin of Chemical Reaction Engineering & Catalysis are sole and exclusive responsibility of their respective authors and advertisers.
Remember, even though we ask for a transfer of copyright for publishing (CTAP), our journal Author(s) retain (or are granted back) significant scholarly rights as mentioned before.
The Copyright Transfer Agreement for Publishing (CTAP) Form can be downloaded here: [Copyright Transfer Agreement for Publishing (CTAP) Form BCREC 2024]
The copyright form should be signed electronically and send to the Editorial Office in the form of original e-mail below: Prof. Dr. I. Istadi (Editor-in-Chief)Editorial Office of Bulletin of Chemical Reaction Engineering & CatalysisLaboratory of Plasma-Catalysis (R3.5), UPT Laboratorium Terpadu, Universitas DiponegoroJl. Prof. Soedarto, Semarang, Central Java, Indonesia 50275Telp/Whatsapp: +62-81-316426342E-mail: bcrec[at]live.undip.ac.id
(This policy statements has been updated at 24th January 2024)