skip to main content

Enhance Removal Pollutant from Batik Industrial Wastewater via Photo- Fenton Process: Efficiency and Kinetic Study

1Mechanical Engineering, Politeknik Negeri Batam, Batam, Indonesia

2Chemical Engineering, Universitas Muhammadiyah Gresik, Gresik, Indonesia

Received: 6 Aug 2025; Revised: 29 Sep 2025; Accepted: 29 Sep 2025; Available online: 1 Oct 2025; Published: 30 Dec 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

The present research evaluates the efficiency of the Photo-Fenton-like process under UV irradiation by varying ratio of hydrogen peroxide (H₂O₂) to Chemical Oxygen Demand (COD) and H₂O₂ to ferrous ion (Fe²⁺) using wastewater from a batik manufacturer in Gresik. Initial experiments demonstrated that varying the ratio of H2O2/COD contributes to Chemical Oxygen Demand (COD) removal, while maintaining a constant H2O2/Fe2+ ratio. The result reveals a significant effect on Chemical Oxygen Demand (COD) removal achieving 64.58% efficiency which indicates that highly reactive OH* radicals successfully generated in photo-Fenton-like process. Further optimization by increasing the ratio H2O2/COD = 15 (g/g) and H2O2/Fe2+ = 20 (g/g) resulting on maximum percentage of Chemical Oxygen Demand (COD) removal of 92.47% proving the massive production of OH* radicals. The kinetics reaction model which describes the Chemical Oxygen Demand (COD) degradation rate showed the BMG kinetic model, with parameters of 1/m = 0.9352, 1/b = 0.7159, and a coefficient of determination (R²) of 0.9986, indicating an excellent fit and high predictive accuracy of the kinetic model for this process. Copyright © 2025 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Wastewater; Photo-Fenton; Kinetic Study; Advanced Oxidation

Article Metrics:

  1. Rashidi, H.R., Sulaiman, N.M.N., Hashim, N.A., Hassan, C.R.C., Ramli, M.R. (2015). Synthetic reactive dye wastewater treatment by using nano-membrane filtration. Desalination and Water Treatment, 55(1), 86–95. DOI: 10.1080/19443994.2014.912964
  2. Mukimin, A., Vistanty, H., Zen, N., Purwanto, A., Wicaksono, K.A. (2018). Performance of bioequalization-electrocatalytic integrated method for pollutants removal of hand-drawn batik wastewater. Journal of Water Process Engineering, 21, 77–83. DOI: 10.1016/j.jwpe.2017.12.004
  3. Zakaria, N., Rohani, R., Wan Mohtar, W.H. M., Purwadi, R., Sumampouw, G.A., Indarto, A. (2023). Batik Effluent Treatment and Decolorization—A Review. Water, 15(7), 1339. DOI: 10.3390/w15071339
  4. Ramadhan, R.S., Bagastyo, A.Y. (2024). A comparative study of ferrous and persulfate catalysts for the H2O2/UV oxidation of batik wastewater. Sustinere: Journal of Environment and Sustainability, 8(2), 230–241. DOI: 10.22515/sustinere.jes.v8i2.421
  5. Endalew, M., Alemayehu, E., Asaithambi, P. (2025). Hospital wastewater treatment using integrated sono-photo-fenton process: Experimental design through RSM. Scientific African, 27, e02585. DOI: 10.1016/j.sciaf.2025.e02585
  6. Hayat, H., Mahmood, Q., Pervez, A., Bhatti, Z.A., Baig, S.A. (2015). Comparative decolorization of dyes in textile wastewater using biological and chemical treatment. Separation and Purification Technology, 154, 149–153. DOI: 10.1016/j.seppur.2015.09.025
  7. Wang, X., Jing, J., Zhou, M., Dewil, R. (2023). Recent advances in H2O2-based advanced oxidation processes for removal of antibiotics from wastewater. Chinese Chemical Letters, 34(3), 107621. DOI: 10.1016/j.cclet.2022.06.044
  8. Fuentes, L., Robledo, S., Natera, J., Massad, W. (2024). Box-Behnken Experimental Design to Optimize the Degradation of Methyl Orange by Β-Cyclodextrin-Assisted Photo-Fenton. Journal of Photochemistry & Photobiology, A: Chemistry, 467, 116419. DOI: 10.2139/ssrn.5017281
  9. Hakika, D.C., Sarto, S., Mindaryani, A., Hidayat, M. (2019). Decreasing COD in Sugarcane Vinasse Using the Fenton Reaction: The Effect of Processing Parameters. Catalysts, 9(11), 881. DOI: 10.3390/catal9110881
  10. Guo, R., Zhang, X., Kuklin, A., Peng, G., Jin, L., Chen, Y., Hans, A., Zhang, Y. (2025). Synergistic oxidation and reduction of complex pollutants in wastewater using a self-cycling piezo-photocatalytic fenton system. Journal of Hazardous Materials, 490, 137774. DOI: 10.1016/j.jhazmat.2025.137774
  11. Pamuła, J., Karnas, M., Paluch, A., Styszko, K. (2022). Comparative study on classical and modified UV/H2O2 and Fenton reaction based methods for the removal of chemical pollutants in water treatment. Desalination and Water Treatment, 275, 92–102. DOI: 10.5004/dwt.2022.28779
  12. Asaithambi, P., Alemayehu, E., Sajjadi, B., Aziz, A.R.A. (2017). Electrical energy per order determination for the removal pollutant from industrial wastewater using UV/Fe2+/H2O2 process: Optimization by response surface methodology. Water Resources and Industry, 18, 17–32. DOI: 10.1016/j.wri.2017.06.002
  13. Nieto, L.M., Hodaifa, G., Rodríguez, S., Giménez, J.A., Ochando, J. (2011). Degradation of organic matter in olive-oil mill wastewater through homogeneous Fenton-like reaction. Chemical Engineering Journal, 173(2), 503–510. DOI: 10.1016/j.cej.2011.08.022
  14. Behnajady, M.A., Modirshahla, N., Ghanbary, F. (2007). A kinetic model for the decolorization of C.I. Acid Yellow 23 by Fenton process. Journal of Hazardous Materials, 148(1–2), 98–102. DOI: 10.1016/j.jhazmat.2007.02.003
  15. Ramos, M.D.N., Silva, G.L.S., Lessa, T.L., Aguiar, A. (2022). Study of kinetic parameters related to dyes oxidation in ascorbic acid-mediated Fenton processes. Process Safety and Environmental Protection, 168, 1131–1141. DOI: 10.1016/j.psep.2022.10.083
  16. Vitale, P., Ramos, P.B., Colasurdo, V., Delletesse, M.I., Barreto, G.P. (2023). Degradation of printing ink effluent and industrial predesign by UV/H2O2 treatment: A kinetic study. Cleaner Waste Systems, 5, 100106. DOI: 10.1016/j.clwas.2023.100106
  17. Zhang, Q., Wang, C., Lei, Y. (2016). Fenton’s Oxidation Kinetics, Pathway, and Toxicity Evaluation of Diethyl Phthalate in Aqueous Solution. Journal of Advanced Oxidation Technologies, 19(1). DOI: 10.1515/jaots-2016-0117
  18. Zhang, C., Liu, L., Pan, Y., Qin, R., Wang, W., Zhou, M., Zhang, Y. (2025). Detection methodologies and mechanisms of reactive oxygen species generated in Fenton/Fenton-like processes. Separation and Purification Technology, 355, 129578. DOI: 10.1016/j.seppur.2024.129578
  19. Guo, R., Zhang, X., Kuklin, A., Peng, G., Jin, L., Chen, Y., Hans, A., Zhang, Y. (2025). Synergistic oxidation and reduction of complex pollutants in wastewater using a self-cycling piezo-photocatalytic fenton system. Journal of Hazardous Materials, 490, 137774. DOI: 10.1016/j.jhazmat.2025.137774
  20. Li, Y., Cheng, H. (2022). Autocatalytic effect of in situ formed (hydro)quinone intermediates in Fenton and photo-Fenton degradation of non-phenolic aromatic pollutants and chemical kinetic modeling. Chemical Engineering Journal, 449, 137812. DOI: 10.1016/j.cej.2022.137812

Last update:

No citation recorded.

Last update:

No citation recorded.