skip to main content

Quality Analysis of Biobriquettes Combination Ratio of Oil palm Frond and Water Hyacinth Waste with Durian Seed Flour Adhesive

Department of Chemical Engineering, Faculty of Engineering, Universitas Sumatera Utara, Medan 20155, Indonesia

Received: 13 Jun 2025; Revised: 2 Jul 2025; Accepted: 8 Jul 2025; Available online: 28 Jul 2025; Published: 30 Dec 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

This study investigates the production of biobriquettes from a mixture of oil palm frond waste and water hyacinth using durian seed flour as a sustainable adhesive. Biobriquettes were fabricated with varying mass ratios of oil palm frond to water hyacinth (25:75, 50:50, and 75:25) and adhesive concentrations (5%, 10%, 15%, and 20%). Durian seed flour was selected for its starch content, offering an eco-friendly alternative to conventional adhesive like tapioca flour without competing with food resources. Slow primary carbonization (pyrolysis) was employed as the fabrication method. The produced biobriquettes were analyzed for moisture content, ash content, volatile matter, fixed carbon, and calorific value. The optimal formulation was identified at a 75:25 ratio of oil palm frond to water hyacinth with 15% durian seed flour adhesive, yielding a moisture content of 5.91%, volatile matter of 13.97%, ash content of 3.05%, fixed carbon content of 77.07%, and a calorific value of 6,400.78 cal/g. These results demonstrate the potential of durian seed flour as an effective adhesive and highlight the feasibility of utilizing agricultural and invasive biomass wastes to produce high-quality, sustainable biobriquettes. Copyright © 2025 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: biobriquette; carbonization; oil palm fronds; water hyacinth; durian seeds
Funding: Universitas Sumatera Utara

Article Metrics:

  1. Badan Pusat Statistik (2023). Jumlah Penduduk Pertengahan Tahun (Ribu Jiwa) 2018-2022. URL: https://www.bps.go.id/indicator/12/1975/1/jumlah-penduduk-pertengahan-tahun.html
  2. Amheka, A., Tuati, D.N.F. (2018). Peranan Energi Alternatif Ramah Lingkungan Dengan Biogas Limbah Peternakan Sapi di Wilayah Kupang NTT. Jurnal Teknologi, 1(1), 1–11
  3. Radhiana, Yana, S., Muzailin, Zainuddin, Susanti, Kasmaniar, Hanum, F. (2023). Strategi Keberlanjutan Pembangunan Energi Terbarukan Jangka Panjang Indonesia: Kasus Biomassa Energi Terbarukan di Sektor Pertanian, Perkebunan dan Kehutanan Indonesia. Jurnal Serambi Engineering, 8(1), 4978–4990
  4. Herlambang, S., Rina, S., Purwono, A., Sutiono, H.T. (2017). Buku Ajar: Biomassa Sebagai Sumber Energi Masa Depan. Yogyakarta: Gerbang Media Aksara
  5. Gafur, A., Sudarmanta, B., Saleh, A.R. (2021). Pengaruh Masukan Udara Bertingkat pada Proses Gasifikasi Pelepah Kelapa Sawit Terhadap Distribusi Temperatur dan Kandungan Tar. Jurnal Dinamika Vokasional Teknik Mesin, 6(1) DOI: 10.21831/dinamika.v6i1.34288
  6. Omar, N.N., Abdullah, N., Mustafa, I.S., Sulaiman, F. (2018). Characterisation of Oil Palm Frond for Bio-oil Production. Academy of Sciences Malaysia Science Journal, 11(1), 9–22
  7. Yemita, S., Helwani, Z., Fatra, W. (2016). Karbonasi Pelepah Sawit. Jurnal Online Mahasiswa Fakultas Teknik, 3(1), 1–6
  8. Ariyanto, E., Karim, M.A., Firmansyah, A. (2014). Biobriket Enceng Gondok (Eichhornia Crassipes) Sebagai Bahan Bakar Energi Terbarukan. Reaktor, 15(1) DOI: 10.14710/reaktor.15.1.59-63
  9. Rahman, S. (2018). Teknologi Pengolahan Tepung dan Pati Biji-Bijian Berbasis Tanaman Kayu. Deepublish
  10. Pranaya, I.P.N., Erista, A., Ngatirah (2024). Pengaruh Jenis Dan Konsentrasi Perekat Terhadap Karakteristik Briket Pelepah Kelapa Sawit. G-Tech : Jurnal Teknologi Terapan, 8, 7–19
  11. Saputra, D., Siregar, A.L., Rahardja, I.B. (2021). Karakteristik Briket Pelepah Kelapa Sawit Menggunakan Metode Pirolisis Dengan Perekat Tepung Tapioka. Jurnal Asiimetrik: Jurnal Ilmiah Rekayasa & Inovasi. DOI: 10.35814/asiimetrik.v3i2.1973
  12. Yazid, N.S.M., Norazlin, A., Norhayati, M., Hazel, M.M.P. (2018). Application of Starch and Starch-Based Products in Food Industry. Journal of Science and Technology, 10(2), 144–174. DOI: 10.30880/jst.2018.10.02.023
  13. Jaswella, R.W.A., Sudding, S., Ramdani, R. (2022). Pengaruh Ukuran Partikel terhadap Kualitas Briket Arang Tempurung Kelapa. Chemica: Jurnal Ilmiah Kimia dan Pendidikan Kimia, 23(1) DOI: 10.35580/chemica.v23i1.33903
  14. Hudakorn, T., Sritrakul, N. (2020). Biogas and biomass pellet production from water hyacinth. Energy Reports, 6, 532–538. DOI: 10.1016/j.egyr.2019.11.115
  15. Dewi, R.P., Kholik, M. (2020). The effect of adhesive concentration variation on the characteristics of briquettes. Journal of Physics: Conference Series, 1517(1), 1–5. DOI: 10.1088/1742-6596/1517/1/012007
  16. Asmara, S., Lanya, B., Tamrin, Putri, A.N., Rahmat, A., Mutolib, A. (2021). The effect of various varieties of cassava stems waste and tapioca adhesive concentrations on the quality of bio-coal briquette. IOP Conference Series: Earth and Environmental Science, 739(1), 1–11. DOI: 10.1088/1755-1315/739/1/012084
  17. Anizar, H., Sribudiani, E., Somadona, S. (2020). Pengaruh Bahan Perekat Tapioka Dan Sagu Terhadap Kualitas Briket Arang Kulit Buah Nipah. Perennial, 16(1). DOI: 10.24259/perennial.v16i1.9159
  18. Handayani, H.E., Ningsih, Y.B., Meriansyah, M.S. (2019). Effects of carbonization duration on the characteristics of biocoal briquettes (coal and cane waste). IOP Conference Series: Materials Science and Engineering, 478(1), 1–11. DOI: 10.1088/1757-899X/478/1/012027
  19. Dewi, R., Azhari, A., Nofriadi, I. (2020). Aktivasi Karbon Dari Kulit Pinang Dengan Menggunakan Aktivator Kimia KOH. Jurnal Teknologi Kimia Unimal, 9(2), 12–22. DOI: 10.29103/jtku.v9i2.3351
  20. Balong, S., Isa, I., Iyabu, H. (2016). Karakterisasi Biobriket dari Eceng Gondok (Eichornia crassipes) sebagai Bahan Bakar Alternatif. Jambura Journal of Educational Chemistry, 11(2), 147–152
  21. Dethan, J.J.S. (2024). Evaluation of an empirical model for predicting the calorific value of biomass briquettes from candlenut shells and kesambi twigs. Advances in Food Science, Sustainable Agriculture and Agroindustrial Engineering, 7(3), 253–264. DOI: 10.21776/ub.afssaae.2024.007.03.6
  22. Susmanto, P., Yandriani, Y., Dila, A.P., Pratiwi, D.R. (2020). Pengolahan Zat Warna Direk Limbah Cair Industri Jumputan Menggunakan Karbon Aktif Limbah Tempurung Kelapa Pada Kolom Adsorpsi. Jurnal Riset Sains dan Teknologi, 4(2), 77–87. DOI: 10.30595/jrst.v4i2.7309
  23. Mara, I.M., Nuarsa, I.M., Wiratama, I.K. (2024). The effect of particle size and adhesive on the ash content and volatile matter of organic waste bio-charcoal briquettes. International Journal of Engineering Research and Development, 20(3), 67–73
  24. Mencarelli, A., Cavalli, R., Greco, R. (2022). Variability on the energy properties of charcoal and charcoal briquettes for barbecue. Heliyon, 8(1), 1–9. DOI: 10.1016/j.heliyon.2022.e10052
  25. Soka, O., Oluwaseun, O. (2020). A feasibility assessment of the production of char using the slow pyrolysis process. Heliyon, 6(1), 1–11. DOI: 10.1016/j.heliyon.2020.e04346

Last update:

No citation recorded.

Last update:

No citation recorded.