skip to main content

Conversion Improvement of Propylene to Acrylic Acid Process

Department of Chemical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia

Received: 27 Jun 2025; Revised: 28 Jun 2025; Accepted: 29 Jun 2025; Available online: 19 Jul 2025; Published: 29 Dec 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Acrylic acid (C3H4O2) is a chemical compound used widely in industry. This study aims to develop a modifed process for Arcylic Acid production through direct oxidation. The objective is to improve Acrylic Acid conversion over conventional methods. Process modeling and simulation were conducted using Aspen Plus, and the systems were optimized for operating conditions. In conclusion, both proposed methods offer viable and environmentally favorable alternatives for sustainable proyplene production, with the DC2M route offering superior economic performance. Copyright © 2025 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Article Metrics:

  1. Ferrier, A. (2019). Design and cost analysis of acrylic acid plant. Chemical Engineering Undergraduate Honors Theses, University of Arkansas, Fayetteville. Retrieved from https://scholarworks.uark.edu
  2. Kong, Y., Xu, J., Guan, W., Sun, S., Yang, Y., Li, G. (2023) Tailoring the elasticity of nerve implants for regulating peripheral nerve regeneration, Smart Materials in Medicine, 4, 266-285. DOI: 10.1016/j.smaim.2022.11.004
  3. Novelia, A., Meyrina, S., Muhammad, M.N., Eggy, A.P. (2019). Teknologi Proses Sintesis Aneka Produk Petrokimia Sintesis Vynil (Acrylic, Acrylic Acid, & Acrylonitrile. Universitas Lambung Mangkurat Banjarbaru
  4. Bhagwat, S.S., Li, Y., Cortés-Peña, Y.R., Brace, E.C., Martin, T.A., Zhao, H., Guest, J.S. (2021). Sustainable Production of Acrylic Acid via 3-Hydroxypropionic Acid from Lignocellulosic Biomass. ACS Sustainable Chemistry & Engineering, 9(49), 16659-16669. DOI: 10.1021/acssuschemeng.1c05441
  5. Liu, Q., Xie, L., Du, H., Xu, S., Du, Y. (2020). Study on The Concentration of Acrylic Acid and Acetic Acid by Reverse Osmosis. Membranes (Basel). DOI: 10.3390/membranes10070142
  6. Agarwal, A.K., Mehra, S., Valera, H., Mukherjee, N.K., Kumar, V., Nene, D. (2023). Dimethyl ether fuel injection system development for a compression ignition engine for increasing the thermal efficiency and reducing emissions. Energy Conversion and Management, 287, 117067. DOI: 10.1016/j.enconman.2023.117067
  7. Duque, L., Körber, M., Bodmeier, R. (2018). Improving release completeness from PLGA-based implants for the acid-labile model protein ovalbumin. International Journal of Pharmaceutics, 538(1–2), 139–146. DOI: 10.1016/j.ijpharm.2018.01.026
  8. Yay, A.S.E. (2015). Application of life cycle assessment (LCA) for municipal solid waste management: a case study of Sakarya. Journal of Cleaner Production, 94, 284–293. DOI: 10.1016/j.jclepro.2015.01.089
  9. Landi, G., Lisi, L., Russo, G. (2005). Oxidation of propane and propylene to acrylic acid over vanadyl pyrophosphate. Journal of Molecular Catalysis A: Chemical, 239(1–2), 172–179. DOI: 10.1016/j.molcata.2005.09.023
  10. Li, Y., Nan, L., He, B., Liu, R., Liao, D. (2018). Ti/Zr-modified VPO catalyst for selective oxidation of n-butane to maleic anhydride. Chinese Journal of Process Engineering, 18(6), 1293–1301. DOI: 10.12034/j.issn.1009-606X.218135
  11. Pawanipagar, P., Ghasemzadeh, K., D'Agostino, C., Spallina, V. (2025). Reactor intensification on glycerol-to-acrylic acid conversion: a modelling study. Reaction Chemistry & Engineering, 10 (in press), 1–18. DOI: 10.1039/d4re00481g
  12. Kao, C.-S., Hu, K.-H. (2002). Acrylic reactor runaway and explosion accident analysis. Journal of Loss Prevention in the Process Industries, 15(3), 213–222. DOI: 10.1016/S0950-4230(01)00070-5
  13. Fujita, M., Iizuka, Y., Miyake, A. (2017). Thermal and kinetic analyses on Michael addition reaction of acrylic acid. Journal of Thermal Analysis and Calorimetry, 128(3), 1227–1233. DOI: 10.1007/s10973-016-5985-6
  14. Zhou, C., Wang, N., Qian, Y., Liu, X., Caro, J., Huang, A. (2016). Efficient synthesis of dimethyl ether from methanol in a bifunctional zeolite membrane reactor. Angewandte Chemie International Edition, 55(41), 12678-12682. DOI: 10.1002/anie.201604753
  15. Nayal, O.S., Grossmann, O., Pratt, D.A. (2025). Inhibition of acrylic acid and acrylate autoxidation. Organic & Biomolecular Chemistry, 23(1), 4675–4685. DOI: 10.1039/d5ob00265f
  16. Nayal, O.S., Grossmann, O., Pratt, D.A. (2025) Inhibition of acrylic acid and acrylate autoxidation, Organic & Biomolecular Chemistry, 23, 4675–4685. DOI: 10.1039/d5ob00265f

Last update:

No citation recorded.

Last update:

No citation recorded.