skip to main content

Enhancing Ethyl Oleate Purity and Energy Efficiency in the Biodiesel Production Process Through Distillation Design Modifications

Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro, Indonesia

Received: 13 Jun 2025; Revised: 24 Jun 2025; Accepted: 25 Jun 2025; Available online: 29 Jun 2025; Published: 30 Jun 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

The growing demand for renewable energy sources has driven research into more efficient biodiesel production methods. This study focuses on enhancing the purity and energy efficiency of ethyl oleate in biodiesel production through the transesterification of triolein using ethanol and sodium hydroxide. Two process designs were compared: a base process and a modified process incorporating the removal of the initial mixer, adjustment of distillation flow rates, and addition of a second distillation column. The modified process resulted in a higher ethyl oleate purity of 99.03% compared to 89.98% in the base case. Furthermore, energy savings increased to 57.66% and carbon emissions were reduced by 57.65%, demonstrating improved environmental performance. These findings suggest that process redesign can significantly improve biodiesel production quality and sustainability. However, further research is needed to assess economic feasibility using tools such as the Aspen Process Economic Analyzer (APEA) for potential industrial-scale implementation. Copyright © 2025 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Biodiesel; triolein transesterification; energy efficiency; product purity; carbon emissions, process simulation, Aspen HYSYS.

Article Metrics:

  1. Jayakumar, M., Karmegam, N., Gundupalli, M.P., Bizuneh Gebeyehu, K., Tessema Asfaw, B., Chang, S.W., Ravindran, B., Kumar Awasthi, M. (2021). Heterogeneous base catalysts: Synthesis and application for biodiesel production – A review. Bioresource Technology, 331(March) DOI: 10.1016/j.biortech.2021.125054
  2. Mahlia, T.M.I., Syazmi, Z.A.H.S., Mofijur, M., Abas, A.E.P., Bilad, M.R., Ong, H.C., Silitonga, A.S. (2020). Patent landscape review on biodiesel production: Technology updates. Renewable and Sustainable Energy Reviews, 118, 109526. DOI: 10.1016/J.RSER.2019.109526
  3. Nasution, M.A., Herawan, T., Damoko, D. (2007). Pengaruh Penggunaan Bahan Bakar Biodiesel Sawit terhadap Konsumsi dan Emisi Mobil Diesel Tipe Common Rail. Jurnal Penelitian Kelapa Sawit, 15(2), 91–102
  4. Susanti, T., Mas’udah, M., Santosa, S. (2023). STUDI PENGGUNAAN KATALIS CaO-NaOH PADA PRODUKSI BIODIESEL DARI MINYAK JELANTAH. DISTILAT: Jurnal Teknologi Separasi, 8(2), 294–300. DOI: 10.33795/distilat.v8i2.361
  5. Ben Hmida, R., Gargouri, B., Sevim, D., Chtourou, F. (2022). Fatty acid and triacyglycerid as markers of virgin olive oil from mediterranean region: traceability and chemometric authentication. European Food Research and Technology, 248(1), 1749–1764
  6. Devita, L., Penyuluhan, S.T., Medan, P. (2015). Biodiesel Sebagai Bioenergi Alternatif dan Prospeftif. Agrica Ekstensia, Vol. 9 No., 23–26
  7. Frigerio, M., V. M. Freire, R., Soares, T.A., Amenitsch, H., Leser, M.E., Salentinig, S. (2024). Interfacial structurization between triolein and water from pH and buffer ions. Journal of Colloid and Interface Science, 665, 1091–1101. DOI: 10.1016/J.JCIS.2024.03.089
  8. Santos Bartolome, P., Van Gerven, T. (2022). A comparative study on Aspen Hysys interconnection methodologies. Computers and Chemical Engineering, 162, 1–15. DOI: 10.1016/j.compchemeng.2022.107785
  9. Da Cruz, D.M. de B., Da Silva, C.M.C.B., Menezes, J.D. de S., Magalhães, A.M.C., De Faro, F.S. (2021). Otimização do processo de producão de biodiesel e glicerol a partir do óleo de palma e soja por modelagem no software dwsim / Optimization of biodiesel and glycerol production process from palm oil and soy by modeling in dwsim software. Brazilian Journal of Development, 7(8), 77121–77145. DOI: 10.34117/bjdv7n8-094
  10. Yandrapu, V.P., Kanidarapu, N.R. (2022). Energy, economic, environment assessment and process safety of methylchloride plant using Aspen HYSYS simulation model. Digital Chemical Engineering, 3, 100019. DOI: 10.1016/J.DCHE.2022.100019
  11. Budiman, A.A., Samik, S. (2023). Review Artikel : Produksi Biodiesel Dari Minyak Goreng Bekas Dengan Metode Transesterifikasi Menggunakan Katalis. Unesa Journal of Chemistry, 12(2), 36–48. DOI: 10.26740/ujc.v12n2.p36-48
  12. Wang, M., Song, E., Li, L., Zhang, Y., Wang, E. (2023). Application of dividing wall column in azeotropic distillation with intermediate boiling-point heteroazeotrope: Simulation and optimization. Chemical Engineering Research and Design, 189(November 2022), 384–400. DOI: 10.1016/j.cherd.2022.11.044
  13. Dimawarnita, F., Emha, Z.M.F., Koto, A., Faramitha, Y. (2023). Karakteristik Sifat Fisika Kimia Biodiesel Berbasis Minyak Nabati. WARTA Pusat Penelitian Kelapa Sawit, 28(1), 15–26. DOI: 10.22302/iopri.war.warta.v28i1.98
  14. Anggraini, S.A., Yuniningsih, S., Sota, M.M. (2017). Pengaruh pH Terhadap Kualitas Produk Etanol dari Molasses Melalui Proses Fermentasi. Jurnal Reka Buana, 2(2), 99–105
  15. Yaws, C.L. (1999). Chemical Properties Handbook. Texas: McGraw-Hill
  16. Smith, J.M., Van Ness, H.C., Abbott, M.M., Swihart, M.T. (2018). Introduction to chemical engineering thermodynamics. McGraw-Hill Education
  17. Artika, D.I., Sudarminto, H.P., Wahyudi, F. (2023). Perhitungan Reflux Pada Kolom Iii Stasiun Distilasi Di Pt X Lumajang. DISTILAT: Jurnal Teknologi Separasi, 8(3), 532–539. DOI: 10.33795/distilat.v8i3.477
  18. Momotko, M., Łuczak, J., Przyjazny, A., Boczkaj, G. (2021). First deep eutectic solvent-based (DES) stationary phase for gas chromatography and future perspectives for DES application in separation techniques. Journal of Chromatography A, 1635, 461701. DOI: 10.1016/J.CHROMA.2020.461701
  19. Cahyaningtyas, A.K., Zakariya, J., Fahrozi, M.A. (2024). Enhancing of Acetone Purity and Energy Efficiency in the Isopropyl Alcohol ( IPA ) Dehydrogenation Process Through Design Modifications , Heat Exchanger Integration Simulation , and Reactor Temperature Optimization. 1(2), 255–263. DOI: 10.9767/jcerp.20299

Last update:

No citation recorded.

Last update:

No citation recorded.