skip to main content

Advancement of Methanol Purity in CO2 Hydrogenation Process Through Design Optimization, Multistage Compression Simulation, and Purification Model Refinement

Department of Chemical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, 50275, Indonesia

Received: 19 Dec 2024; Revised: 27 Dec 2024; Accepted: 28 Dec 2024; Available online: 20 Jan 2025; Published: 30 Jun 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Rising greenhouse gas emissions, particularly CO2, present significant environmental challenges. The goal of this study is to improve methanol synthesis using CO2 hydrogenation, with an emphasis on increasing purity. To accurately restrict temperature rises during CO2 compression, we did simulations with Aspen HYSYS V11 and a multistage compression approach.  Two notable alterations included the insertion of an absorber unit to improve methanol purity and the recycling of separator outputs. The results show that these process innovations save energy and raw resources while significantly improving methanol output. The findings demonstrate the viability of CO2 hydrogenation as an environmentally beneficial method of producing methanol, which reduces greenhouse gas emissions while still providing a viable chemical feedstock. Copyright © 2025 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Supporting Information (SI) PDF
Keywords: Methanol; CO2 Hydrogenation; Process Optimization; Improvement; Product Purity Enhancement

Article Metrics:

  1. Bellotti, D., Rivarolo, M., Magistri, L., & Massardo, A.F. (2017). Feasibility study of methanol production plant from hydrogen and captured carbon dioxide. Journal of CO2 utilization, 21, 132-138. DOI: 10.1016/j.jcou.2017.07.001
  2. Meunier, N., Chauvy, R., Mouhoubi, S., Thomas, D., & De Weireld, G. (2020). Alternative production of methanol from industrial CO2. Renewable Energy, 146, 1192-1203. DOI: 10.1016/j.renene.2019.07.010
  3. Varone, A., & Ferrari, M. (2015). Power to liquid and power to gas: An option for the German Energiewende. Renewable and Sustainable Energy Reviews, 45, 207-218. DOI: 10.1016/j.rser.2015.01.049
  4. Chin, H.H., Varbanov, P.S., Klemes, J.J., Benjamin, M.F.D., & Tan, R.R. (2020). Asset Maintenance Optimisation Approach in The Chemical and Process Industries - A Review. Chemical Engineering Research and Design, 164, 162-194. DOI: 10.1016/j.cherd.2020.09.034
  5. Mendez, H.L., Arenas, T.L., Aldaco, A.T., Gonzales, E.V.T., Cruz, M.S., & Leyte, R.L. (2021). Interstage Pressure of a Multistage Compressor with Intercoolong. Entropy, 23, 351. DOI: 10.3390/e23030351
  6. Soo, X.Y.D., Lee, J.J., Wu, W. Y., Tao, L., Wang, C., Zhu, Q., & Bu, J. (2024). Advancements in CO2 capture by absorption and adsorption: A Comprehensive Review. Journal of CO2 Utilization, 81. DOI: 10.1016/j.jcou.2024.102727
  7. Van Bennekom, J.G., Venderbosch, R.H., Winkelman, J.G.M., Wilbers, E., Assink, D., Lemmens, K.P.J., & Heeres, H.J. (2013). Methanol synthesis beyond chemical equilibrium. Chemical Engineering Science, 87, 204-208. DOI: 10.1016/j.ces.2012.10.013
  8. Dimian, A.C., & Bildea, C.S. (2018). Energy efficient methanol-to-olefins process. Chemical Engineering Research and Design, 131, 41–54. DOI: 10.1016/j.cherd.2017.11.009
  9. Montebelli, A., Visconti, C.G., Groppi, G., Tronconi, E., Ferreira, C., & Kohler, S. (2013). Enabling small-scale methanol synthesis reactors through the adoption of highly conductive structured catalysts. Catalysis Today, 215, 176-185. DOI: 10.1016/j.cattod.2013.02.020
  10. Abrar, I. Arora, T., & Khandelwal, R. (2023). Bioalcohols as an alternative fuel for transportation: Cradle to grave analysis. Fuel Processing Technology. 242. DOI: 10.1016/j.fuproc.2022.107646
  11. Parris, D., Spinthiropoulos, K., Ragazou, K., Giovou, A., & Tsanaktsidis, C. (2024). Methanol a Plugin Marine Fuel for Green House Reduction -A Review. Energies, 17(3). DOI: 10.3390/en17030605
  12. Adiyar, S.R., Satriyatama, A., Azjuba, A.N., & Sari, N.K.A.K. (2021). An overview of synthetic polymer-based membrane modified with chitosan for direct methanol fuel cell application. IOP Conference Series: Materials Science and Engineering, 1143 (1). DOI: 10.1088/1757899x/1143/1/012002
  13. Fan, W.K., & Tahir, M. (2022). Recent developments in photothermal reactors with understanding on the role of light/heat for CO2 hydrogenation to fuels: A review. Chemical Engineering Journal, 427, 131617. DOI: 10.1016/j.cej.2021.131617
  14. Cui, G., Lou, Y., Zhou, M., Li, Y., Jiang, G., & Xu, C. (2024). Review of Mechanism Investigations and Catalyst Developments for CO2 Hydrogenation to Alcohols. Catalysts, 14(4), 232. DOI: 10.3390/catal14040232
  15. Phey, M.L.P., Abdullah, T.A.T., Ali, U.F.M., Mohamud, M.Y., Ikram, M., & Nabgan, W. (2023). Reverse water gas shift reaction over a Cu/ZnO catalyst supported on regenerated spent bleaching earth (RSBE) in a slurry reactor: the effect of the Cu/Zn ratio on the catalytic activity. RSC Advances, 13(5), 3039-3055. DOI: 10.1039/d2ra07617a
  16. Zhang, C., Wang, X., Shi, X., Bi, J., Huang, X., & You, S. (2024). Performance simulation study of multi-stage compression-throttle water working medium high-temperature heat pump system. Applied Thermal Engineering, 247, 123030. DOI: 10.1016/j.applthermaleng.2024.123030
  17. Procopio, M.N., Urquiza, G., & Castro, L. (2023). Analysis of Absorber Packed Height for Power Plants with Post-Combustion CO2 Capture. Sustainability, 15 (12), DOI: 10.3390/su15129536
  18. Meyer, J.J., Tan, P., Apfelbacher, A., Daschner, R., & Hornung, A. (2016). Modeling of a methanol synthesis reactor for storage of renewable energy and conversion of CO2. Chemical Engineering Technology, 39 (2), 233-245. DOI: 10.1002/ceat.201500084
  19. Bussche, K.V., & Froment, G.F. (1996). A steady-state kinetic model for methanol synthesis and the water gas shift reaction on a commercial Cu/ZnO/Al2O3Catalyst. Journal of Catalysis, 161 (1), 1-10. DOI: 10.1006/jcat.1996.0156
  20. Graaf, G.H., Stamhuis, E.J., & Beenackers, A.A. C.M. (1988). Kinetics of low-pressure methanol synthesis. Chemical Engineering Science, 43 (12), 3185-3195. DOI: 10.1016/0009-2509(88)85127-3
  21. Manenti, F., Leon-Garzon, A.R., Ravaghi-Ardebili, Z., & Pirola, C. (2014). Systematic staging design applied to the fixed-bed reactor series for methanol and one-step methanol/dimethyl ether synthesis. Applied Thermal Engineering, 70(2), 1228-1237. DOI: 10.1016/j.applthermaleng.2014.04.011
  22. Martinka, J., Rantuch, P., & Wachter, I. (2019). Impact of water content on energy potential and combustion characteristics of methanol and ethanol fuels. Energies, 12(18). DOI: 10.3390/en12183491
  23. Aboelela, D. (2024). Converting CO2 into Clean Fuels: A Sustainable Approach. International Journal of Industry and Sustainable Development, 5 (2), 29-46. DOI: 10.21608/ijisd.2024.296846.1050

Last update:

No citation recorded.

Last update:

No citation recorded.