skip to main content

Optimizing the Yield Product by Changing the Reactor Type for CO2 Hydrogenation in Methanol Synthesis with Process Simulation Software

Department of Chemical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, 50275, Indonesia

Received: 19 Dec 2024; Revised: 27 Dec 2024; Accepted: 27 Dec 2024; Available online: 8 Jan 2025; Published: 30 Jun 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Hydrogenation is chosen as a process to reduce CO2 in the air, based on its thermodynamic stability. One of the important things to increase the yield product is by using reactor. This study aims to compare two types of reactor, i.e. equilibrium reactor and conversion reactor. In this study, we made two types of processes as the representative for each type of reactor, by using the reaction and kinetic data from reference. As the result, we investigate the yield product result and the energy used. The number of energy used (in kW) in line to total yield product. For the equilibrium reactor, the yield product and energy used in kilowatt are lesser than the conversion reactor, and for conversion reactor is vice versa. Two of the results state that the higher total amount of energy used the higher total yield product. For the future study, this study could be one of the reference, or could be one of the future consideration for choosing exact reactor based on their needs. Copyright © 2025 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: CO2; Hydrogenation; equilibrium reactor; conversion reactor; methanol

Article Metrics:

  1. Niam, A.C., Handriyono, R.E., Hastuti, I.P., & Kusuma, M.N. (2021). Analysis of Greenhouse Gas Emissions from Mobile Sources in Jombang Urban Area during the Covid-19 Pandemic. Jurnal Ilmu Lingkungan, 19(3), 582–587. DOI: 10.14710/jil.19.3.582-587
  2. Younas, M., Rezakazemi, M., Daud, M., Wazir, M.B., Ahmad, S., Ullah, N., Ramakrishna, S. (2020). Recent progress and remaining challenges in post-combustion CO2 capture using metal-organic frameworks (MOFs). Progress in Energy and Combustion Science. 80, 100849. DOI: 10.1016/j.pecs.2020.100849
  3. Oyewole, K.A., Okedere, O.B., Rabiu, K.O., Alawode, K.O., & Oyelami, S. (2023). Carbon dioxide emission, mitigation and storage technologies pathways. Sustainable Environment. 9 (1), 2188760. DOI: 10.1080/27658511.2023.2188760
  4. Krismanuel, H. (2024). Correlation Between Carbon Dioxide (CO2) and Respiratory Issues: A Literature Review. Jurnal Penelitian dan Karya Ilmiah Lembaga Penelitian Universitas Trisakti, 159–168. DOI: 10.25105/pdk.v9i1.17646
  5. Akpolat, A.G., & Bakırtaş, T. (2024). The nonlinear impact of renewable energy, fossil energy and CO2 emissions on human development index for the eight developing countries. Energy, 312. DOI: 10.1016/j.energy.2024.133466
  6. McGlynn, S.E., Glass, J.B., Johnson-Finn, K., Klein, F., Sanden, S.A., Schrenk, M.O., Vitale-Brovarone, A. (2020). Hydrogenation reactions of carbon on Earth: Linking methane, margarine, and life. American Mineralogist, 105(5), 599–608. DOI: 10.2138/am-2020-6928CCBYNCND
  7. Ye, R.P., Ding, J., Gong, W., Argyle, M.D., Zhong, Q., Wang, Y., Yao, Y.G. (2019). CO2 hydrogenation to high-value products via heterogeneous catalysis. Nature Communications. 10, 5698. DOI: 10.1038/s41467-019-13638-9
  8. Ya, Y.-N., Huang, C.-W., Nguyen, V.H., & Jeffrey C.W. (2022). Enhanced methanol production by two-stage reaction of CO2 hydrogenation at atmospheric pressure. Catalysis Communications, 162. DOI: 10.1016/j.catcom.2021.106373
  9. Guan, L., Gao, Y., Li, C., Wang, H., Zhang, W., Teng, B., & Xiaodong, W. (2024). Theoretical study of the effects of surface Cu coordination environment on CO2 hydrogenation to CH3OH. Journal of Colloid and Interface Science, 675, 496–504. DOI: 10.1016/j.jcis.2024.07.058
  10. Vaquerizo, L., & Kiss, A.A. (2023). Thermally self-sufficient process for cleaner production of e-methanol by CO2 hydrogenation. Journal of Cleaner Production, 433. DOI: 10.1016/j.jclepro.2023.139845
  11. Wang, Y., Gong, J., Zhou, J., Chen, Z., Tian, D., Na, W., & Gao, W. (2024). Mechanism of methanol synthesis from CO2 hydrogenation over Rh16/In2O3 catalysts: A combined study on density functional theory and microkinetic modeling. Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 52(10), 1462–1474. DOI: 10.1016/S1872-5813(24)60460-3
  12. Wang, D., Du, Y., Liao, Z., Hong, X., & Zhang, S. (2024). Liquid-phase CO2 hydrogenation to methanol synthesis: Solvent screening, process design and techno-economic evaluation. Journal of CO2 Utilization, 90. DOI: 10.1016/j.jcou.2024.102976
  13. Krótki, A., Chwoła, T., Więcław-Solny, L., Tatarczuk, A., Spietz, T., Dobras, S., & Zdeb, J. (2025). Advancements in CO2 hydrogenation – Investigating a CNG pilot plant in Poland. Fuel, 381. DOI: 10.1016/j.fuel.2024.133599
  14. Wang, H., Guo, S., Qin, Z., Li, Z., Wang, G., Dong, M., Wang, J. (2024). A thermodynamic consideration on the synthesis of methane from CO, CO2, and their mixture by hydrogenation. Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 52(10), 1453–1461. DOI: 10.1016/S1872-5813(24)60449-4
  15. Awogbemi, O., & Kallon, D.V.Von. (2022). Application of Tubular Reactor Technologies for the Acceleration of Biodiesel Production. Bioengineering. 9 (347). DOI: 10.3390/bioengineering9080347
  16. Lee, E. (2023). Enhancing Chemical Processes: The Facility of Reactor Design and Optimization. Journal of Advanced Chemical Engineering , 13(3). DOI: 10.35248/2090-4568.23.13.288
  17. Wang, L., Du, H., Elsyed, A.F.N., Yun, N., Wang, X., & Rossi, R. (2024). Impact of reactor architecture and design parameters on the performance of microbial electrolysis cells revealed by the electrode potential slope analysis. Electrochimica Acta, 485. DOI: 10.1016/j.electacta.2024.144072
  18. Hawwash, A.A., Hassan, H., & feky, K. El. (2020). Impact of reactor design on the thermal energy storage of thermochemical materials. Applied Thermal Engineering, 168. DOI: 10.1016/j.applthermaleng.2019.114776
  19. Wang, F., Chen, C., Fu, D., & Singh, R.P. (2024). Effect of reactor temperature and feeding ratio on fed-batch composting of household food waste and green wastes. Biomass and Bioenergy, 181. DOI: 10.1016/j.biombioe.2023.107040
  20. Kawale, A., Shaikh, D., Danwatee, R., & Misal, S. A. Dr. (2022). Process Simulation of Reactor Using Open Source - A Review. International Journal of Advanced Research in Science, Communication, and Technology (IJARSCT), 2(7). DOI: 10.48175/IJARSCT-4617
  21. Varandas, B., Oliveira, M., & Borges, A. (2024). Analytical and Numerical Thermodynamic Equilibrium Simulations of Steam Methane Reforming: A Comparison Study. Reactions, 5(1), 246–259. DOI: 10.3390/reactions5010011
  22. Makkawi, Y., Ibrahim, M., Yasir, N., & Moussa, O. (2024). Solar-thermal conversion of biomass: Principles of solar concentrators/reactors, reported studies, and prospects for large-scale implementation. Fuel Processing Technology. 264, 108139. DOI: 10.1016/j.fuproc.2024.108139
  23. Agustriyanto, R., Setyopratomo, P., Mochni, E. S., & Purwanto, E. (2024). Simulation of the Hydrodealkylation of Toluene Using Conversion Reactor. Keluwih: Jurnal Sains Dan Teknologi, 5(1), 19–26. DOI: 10.24123/saintek.v5i1.6351
  24. Santos Bartolome, P., & Van Gerven, T. (2022). A comparative study on Aspen Hysys interconnection methodologies. Computers and Chemical Engineering, 162. DOI: 10.1016/j.compchemeng.2022.107785
  25. Borisut, P., & Nuchitprasittichai, A. (2020). Process Configuration Studies of Methanol Production via Carbon Dioxide Hydrogenation: Process Simulation-Based Optimization Using Artificial Neural Networks. Energies, 13. DOI: 10.3390/en13246608

Last update:

No citation recorded.

Last update:

No citation recorded.