skip to main content

Reducing Energy Consumption of Methanol Production from Syngas by Modifying Heat Transfer Process

Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro, Semarang, Indonesia

Received: 19 Dec 2024; Revised: 28 Dec 2024; Accepted: 1 Jan 2025; Available online: 25 Jan 2025; Published: 30 Jun 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Methanol is extensively used in the various products, including plastics, paints, adhesives, and synthetic fibers. With the many uses of methanol, its production must have high efficiency both in terms of energy and mass in order to obtain maximum profits. In this paper, we will explain how to reducing energy consumption and maximize methanol product yield by modifying the methanol synthesis. The process modification was carried out by adding heat exchanger, distillation column unit and recycle stream. Case study tools on chemical engineering software were used. Based on process modifications, an increase in methanol yield was obtained from 97.47% to 99%, the total energy savings from this process after adding distillation column is 57.618 × 106 kJ/h or 58.5% of the total initial energy, and with recycle stream the syngas produced reached 5.419 kgmol/h while without recycle stream, the syngas produced was only 4.157kgmol/h. The results of the case study indicate that the addition of heat exchanger, distillation column, and recycle stream is beneficial for the methanol production process by reducing the energy and increasing mass efficiency. Copyright © 2025 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Supporting Information (SI) PDF
Keywords: Methanol; Syngas; Energy Efficiency; Process Simulation; Reducing Energy Consumption

Article Metrics:

  1. Deka, T. J., Osman, A. I., Baruah, D. C., & Rooney, D. W. (2022). Methanol fuel production, utilization, and techno-economy: a review. Environmental Chemistry Letters, 20(6), 3525-3554. DOI: 10.1007/s10311-022-01485-y
  2. Tabibian, S. S., & Sharifzadeh, M. (2023). Statistical and analytical investigation of methanol applications, production technologies, value-chain and economy with a special focus on renewable methanol. Renewable and Sustainable Energy Reviews, 179, 113281. DOI: 10.1016/j.rser.2023.113281
  3. Liu, G., Hagelin-Weaver, H., & Welt, B. (2023, January). A concise review of catalytic synthesis of methanol from synthesis gas. In Waste, 1(1), 228-248. DOI: 10.3390/waste1010015
  4. Bozzano, G., & Manenti, F. (2016). Efficient methanol synthesis: Perspectives, technologies and optimization strategies. Progress in Energy and Combustion Science, 56, 71-105. DOI: 10.1016/j.pecs.2016.06.001
  5. Dalena, F., Senatore, A., Marino, A., Gordano, A., Basile, M., & Basile, A., (2018). Methanol production and applications: an overview. Methanol, 3-28. DOI: 10.1016/B978-0-444-63903-5.00001-7
  6. Schack, D., Jastram, A., Liesche, G., & Sundmacher, K. (2020). Energy-efficient distillation processes by additional heat transfer derived from the fluxmax approach. Frontiers in Energy Research, 8, 134. DOI: 10.3389/fenrg.2020.00134
  7. Suhendi, E., Paradise, G. U., & Priandana, I. (2017). Pengaruh laju alir udara dan waktu proses gasifikasi terhadap gas producer limbah tangkai daun tembakau menggunakan gasifier tipe downdraft. Jurnal Bahan Alam Terbarukan, 5(2), 45-53. DOI: 10.15294/jbat.v5i2.6054
  8. Janajreh, I., Adeyemi, I., Raza, S. S., & Ghenai, C. (2021). A review of recent developments and future prospects in gasification systems and their modeling. Renewable and Sustainable Energy Reviews, 138, 110505. DOI: 10.1016/j.rser.2020.110505
  9. Siang, T. J., Jalil, A. A., Liew, S. Y., Owgi, A. H. K., & Rahman, A. F. A. (2024). A review on state-of-the-art catalysts for methane partial oxidation to syngas production. Catalysis Reviews, 66(1), 343-399. DOI: 10.1080/01614940.2022.2072450
  10. Ayodele, B. V., & Cheng, C. K. (2015). Process modelling, thermodynamic analysis and optimization of dry reforming, partial oxidation and auto-thermal methane reforming for hydrogen and syngas production. Chemical Product and Process Modeling, 10(4), 211-220. DOI: 10.1515/cppm-2015-0027
  11. Paiva, M., Vieira, A., Gomes, H. T., & Brito, P. (2021). Simulation of a downdraft gasifier for production of syngas from different biomass feedstocks. ChemEngineering, 5(2), 20. DOI: 10.3390/chemengineering5020020
  12. Chen, F., Zhang, P., Xiao, L., Liang, J., Zhang, B., Zhao, H., & Tsubaki, N. (2021). Structure–performance correlations over Cu/ZnO interface for low-temperature methanol synthesis from syngas containing CO2. ACS Applied Materials & Interfaces, 13(7), 8191-8205. DOI: 10.1021/acsami.0c18600
  13. Xiong, G., Kundu, A., & Fisher, T. S. (2015). Influence of temperature on supercapacitor performance. Thermal Effects in Supercapacitors, 71-114. DOI: 10.1007/978-3-319-20242-6_4
  14. Yaws, C.L., (1999). Chemical Properties Handbook. Mc Graw Hill Handbooks. New York
  15. Smith, J., & Van Ness, M. (1997). Introduction to Chemical Engineering Thermodynamics. New York: McGraw-Hill Book Company
  16. Da Silva, M. J. (2016). Synthesis of methanol from methane: Challenges and advances on the multi-step (syngas) and one-step routes (DMTM). Fuel Processing Technology, 145, 42-61. DOI: 10.1016/j.fuproc.2016.01.023
  17. Zhuang, Y., Zhou, C., Zhang, L., Liu, L., Du, J., & Shen, S. (2021). A simultaneous optimization model for a heat-integrated syngas-to-methanol process with Kalina Cycle for waste heat recovery. Energy, 227, 120536. DOI: 10.1016/j.energy.2021.120536
  18. Sepahi, S., & Rahimpour, M. R. (2023). Methanol production from syngas. In Advances in Synthesis Gas: Methods, Technologies and Applications, 111-146. DOI: 10.1016/B978-0-323-91878-7.00012-5
  19. Timsina, R., Thapa, R. K., Moldestad, B. M., & Eikeland, M. S. (2022). Methanol synthesis from syngas: a process simulation. Scandinavian Simulation Society, 444-449. DOI: 10.3384/ecp21185444
  20. Puig-Gamero, M., Argudo-Santamaria, J., Valverde, J. L., Sánchez, P., & Sanchez-Silva, L. (2018). Three integrated process simulation using aspen plus®: Pine gasification, syngas cleaning and methanol synthesis. Energy conversion and management, 177, 416-427. DOI: 10.1016/j.enconman.2018.09.088
  21. Leonzio, G. (2018). Methanol synthesis: optimal solution for a better efficiency of the process. Processes, 6(3), 20. DOI: 10.3390/pr6030020

Last update:

No citation recorded.

Last update:

No citation recorded.