skip to main content

Optimization of Methyl Chloride Production from Methanol and Hydrogen Chloride by Enhancing Purity and Reducing Total Energy Demand

1Department of Chemical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, 50275, Indonesia

2Department of Bioprocess Engineering, Universitas Indonesia, Depok 16424, Indonesia

Received: 19 Dec 2024; Revised: 22 Dec 2024; Accepted: 27 Dec 2024; Available online: 10 Jan 2025; Published: 30 Jun 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Methyl chloride, also known as chloromethane, is an important basic material in the global chemical industry. In 2022, the demand for methyl chloride in Indonesia was recorded at 103,748 tons per year. Based on projections, this figure is expected to increase to 134,696 tons per year by 2027. This study aims to investigate the design of methyl chloride plant by considering the efficiency in terms of energy and purity of yield by utilizing Aspen HYSYS V12 simulation tool in process integration. This research utilizes the iterative simulation method to compare the basic process simulation and the modified process simulation for methyl chloride production. The results show that the modified methyl chloride production process simulation has high energy efficiency as indicated by less energy requirements compared to the basic methyl chloride process. In addition, the simulation results of the modified methyl chloride production process produced methyl chloride reaching a high percentage of purity. In the basic process, the purity of methyl chloride reached 72.36% while the modified process showed an increase to 79.51%. It can be concluded that the simulation results of the modified process are more effective than the basic process in terms of energy requirements and purity product. Copyright © 2025 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Supporting Information (SI) PDF
Keywords: Aspen HYSYS; methyl chloride; hydrochlorination; energy efficiency; process integration

Article Metrics:

  1. Ji, Y., Zhang, F., Ye, F., Zhang, J., & Zhang, J. (2018). Methyl chloride synthesis over metal chlorides-modified mesoporous alumina catalyst. Catalysts, 8(3), 99. DOI: 10.3390/catal8030099
  2. Kariofillis, S., Shields, B., Tekle‐Smith, M., Zacuto, M., & Doyle, A. (2020). Nickel/photoredox-catalyzed methylation of (hetero)aryl chlorides using trimethyl orthoformate as a methyl radical source. Journal of the American Chemical Society, 142(16), 7683-7689. DOI: 10.1021/jacs.0c02805
  3. Tsai, W. (2017). Fate of chloromethanes in the atmospheric environment: implications for human health, ozone formation and depletion, and global warming impacts. Toxics, 5(4), 23. DOI: 10.3390/toxics5040023
  4. Yandrapu, V. and Rao, K. (2022). Conceptual design of methyl chloride production processes: a review. Periodica Polytechnica Chemical Engineering, 66(3), 341-353. DOI: 10.3311/ppch.19556
  5. Badan Pusat Statistik. (2022). Kebutuhan Chloromethane (Methyl Chloride) di Indonesia. www.bps.go.id accessed on December 19, 2024
  6. Badan Pusat Statistik. (2022). Data Ekspor dan Impor Chloromethane (Methyl Chloride). www.bps.go.id accessed on December 19, 2024
  7. Gollangi, R. and Rao, K. (2022). Energetic, exergetic analysis and machine learning of methane chlorination process for methyl chloride production. Energy & Environment, 34(7), 2432-2453. DOI: 10.1177/0958305x221109604
  8. McInroy, A., Winfield, J., Dudman, C., Jones, P., & Lennon, D. (2022). Interaction of methanol over cscl- and kcl-doped η-alumina and the attenuation of dimethyl ether formation. The Journal of Physical Chemistry C, 126(25), 10378-10387. DOI: 10.1021/acs.jpcc.2c02275
  9. Jeon, M. (2024). Maximizing chlorine gas conversion in methyl chloride production by the integration of methane chlorination and methanol hydrochlorination. Industrial & Engineering Chemistry Research, 63(13), 5742-5751. DOI: 10.1021/acs.iecr.4c00503
  10. Kim, Y., Kim, J., Kim, H. W., Kim, T.-W., Kim, H. J., Chang, H., Park, M. B., & Chae, H.-J. (2019). Sulfated Tin Oxide as Highly Selective Catalyst for the Chlorination of Methane to Methyl Chloride. Korea Research Institute of Chemical Technology, 9, 9398-9410. DOI: 10.1016/j.jcat.2019.06.021
  11. Mondal, S. K., Uddin, M. R., Majumder, S., & Pokhrel, J. (2015). HYSYS simulation of chemical process equipments. Chemical Engineering and Processing, 1-7. DOI: 10.13140/RG.2.1.4186.9289
  12. Alcantra-avila, J. R. (2023). 50 years of optimization in Japan Using Superstructures. Journal of Chemical Engineering of Japan, 56(1), 1-12. DOI: 10.1080/00219592.2023.2188112
  13. Kullmann, F., Markewitz, P., Kotzur, L., & Stolten, D. (2022). The value of recycling for low-carbon energy systems: A case study of Germany's energy transition, 1-48. DOI: 10.48550/arXiv.2202.04521
  14. Habata, K., Tanaka, S., & Araki, H. (1976). Process for preparing methyl chloride. U.S. Patent: Shinetsu Chemical Company
  15. Ghoderao, P. N. P., Narayan, M., Haily, V., & Byun, H. (2022). Predictions of thermodynamic properties of pure fluids, rerigerants, and binary mixtures using modified Peng-Robinson equation of state. Korean Journal of Chemical Engineering, 39, 3452-3463. DOI: 10.1007/s11814-022-1217-x
  16. Yaws, C. L. (1999). Chemical Properties Handbook. New York: Mc-Graw-Hill
  17. Sinnot, R. & Towler, G. (2020). Design of reactors and mixers. Chemical Engineering Design, 497-588. DOI: 10.1016/B978-0-12-821179-3.00015-7
  18. Stegehake, C., Riese, J., & Grünewald, M. (2019). Modeling and Validating Fixed-Bed Reactors: A State-of-the-Art Review. Chemical Biological Engineering Reviews. DOI: 10.1002/cben.201900002
  19. Shim, J. & Lee, J. M. (2022). Synthesis of distillation sequence with thermally coupled configurations using reinforcement learning. Computer Aided Chemical Engineering, 49, 169-174. DOI: 10.1016/B978-0-323-85159-6.50028-2
  20. Reddy, C. C. S., Fang, Y., & Rangaiah, G. P. (2014). Improving energy efficiency of distillation using heat pump assisted columns. Asia-Pacific Journal of Chemical Engineering, 9(6), 905–928. DOI: 10.1002/apj.1842
  21. Luyben, W. L. (2016). Distillation column pressure selection. Separation and Purification Technology, 168, 62–67. DOI: 10.1016/j.seppur.2016.05.015
  22. Mustafa, M. F., Samad, N. A. F. A., Ibrahim, K. A., Ibrahim, N., & Hamid, M. K. A. (2014). Design of Energy Efficient Distillation Columns Systems. Proceedings: International Symposium on Green Manufacturing and Applications (ISGMA 2014), 66-69. Process Systems Engineering Centre, Faculty of Chemical Engineering, Universiti Teknologi Malaysia
  23. Li, M., Peng, J., Cheng, Y., Zhang, Z., Ma, Y., & Gao, J. (2024). Dual-objective optimization and energy efficiency enhancement of natural decantation assisted extractive distillation process for n-butanol/isobutanol/water separation. Separation and Purification Technology, 336, 1-12. DOI: 10.1016/j.seppur.2024.126336
  24. Muhammad, M., Marwan, M., Munawar, E., & Zaki, M. (2022). Experimental study of CO₂ utilization as a density modification agent for maximizing palm shells and kernels separation efficiency. South African Journal of Chemical Engineering, 42, 283–289. DOI: 10.1016/j.sajce.2022.09.006
  25. Lee, M., Kim, D., Shin, Y., Lee, J., & Lee, J. W. (2024). Circulation of self-supplied water for significant energy recovery through heat integration. Energy Conversion and Management, 10(24), 1-11. DOI: 10.1016/j.ecmx.2024.100740
  26. Wang, X., Lu, Y., Chen, C., Yi, X., & Cui, H. (2023). Total-factor energy efficiency of ten major global energy-consuming countries. Journal of Environmental Sciences, 123, 123-134. DOI: 10.1016/j.jes.2023.02.031
  27. Singh, D. K., Sharma, S., Thakur, A., Kumar, S., & Singh, S. (2018). Pharmaceutical Analysis—Drug Purity Determination. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. National Institute of Pharmaceutical Education and Research (NIPER), 1-12. DOI: 10.1016/b978-0-12-409547-2.14551-2

Last update:

No citation recorded.

Last update:

No citation recorded.