skip to main content

Enhancing Mass and Yield Product of Propylene Glycol Production through Glycerol Hydrogenolysis

1Department of Chemical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, 50275, Indonesia

2Department of Chemical Engineering, Faculty of Engineering, Gajah Mada University, Yogyakarta 55281, Indonesia

Received: 19 Dec 2024; Revised: 20 Dec 2024; Accepted: 26 Dec 2024; Available online: 28 Dec 2024; Published: 30 Dec 2024.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2024 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

The chemical industry in Indonesia continues to experience significant growth in both innovation and technology. One of the significant areas of improvement is in supporting materials, exemplified by propylene glycol. The process of producing propylene glycol from glycerol involves hydrogenolysis. The hydrogenolysis process of propylene glycol is the reaction of glycerol with hydrogen gas under specific conditions. The effects of process innovation or modification with the aim of enhancing mass efficiency and yield of propylene glycol. Methods to increase mass efficiency and yield using the Aspen HYSYS V11 simulator tool and implemented effectively. From the process modifications that have been implemented, it can be concluded that this design is quite effective as it mass and yields more efficiency, with one notable improvement being mass efficiency of propylene glycol from 7304 ton/year to 10012 ton/year and the percentage yield of propylene glycol in the final product increasing from 70% to 98%. Copyright © 2024 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Supporting Information (SI) PDF
Keywords: Glycerol; Hydrogenolysis; Propylene Glycol; Mass efficiency; Yield efficiency

Article Metrics:

  1. Marchesan, A., Oncken, M., Filho, R. M., & Maciel, M. R. W. (2019). Simulation-based Analysis of Propylene Glycol Production from Lactic Acid. Chemical Engineering Transactions, 74, 733–738. https://doi.org/10.3303/cet1974123
  2. Okolie, J. A. (2022). Insights on production mechanism and industrial applications of renewable propylene glycol. iScience, 25(9), 104903. https://doi.org/10.1016/j.isci.2022.104903
  3. Seretis, A., & Tsiakaras, P. (2015). Hydrogenolysis of glycerol to propylene glycol by in situ produced hydrogen from aqueous phase reforming of glycerol over SiO2–Al2O3 supported nickel catalyst. Fuel Processing Technology, 142, 135–146. https://doi.org/10.1016/j.fuproc.2015.10.013
  4. Okolie, J. A., Omoarukhe, F. O., Epelle, E. I., Ogbaga, C. C., Adeleke, A. A., & Okoye, P. U. (2023). Biomethane and propylene glycol synthesis via a novel integrated catalytic transfer hydrogenolysis, carbon capture and biomethanation process. Chemical Engineering Journal Advances, 16, 100523. https://doi.org/10.1016/j.ceja.2023.100523
  5. Liu, Y., Wu, M., Rempel, G. L., & Ng, F. T. (2021). Glycerol hydrogenolysis to produce 1, 2-propanediol in absence of molecular hydrogen using a Pd promoted Cu/MgO/Al2O3 catalyst. Catalysts, 11(11), 1299. https://doi.org/10.3390/catal11111299
  6. Jiménez, R. X., Young, A. F., & Fernandes, H. L. S. (2020). Propylene glycol from glycerol: Process evaluation and break-even price determination. Renewable Energy, 158: 181–191. https://doi.org/10.1016/j.renene.2020.05.126
  7. Kaur, J., Sarma, A. K., Jha, M. K., & Gera, P. (2020). Valorisation of crude glycerol to value-added products: Perspectives of process technology, economics and environmental issues. Biotechnology Reports, 27, e00487. https://doi.org/10.1016/j.btre.2020.e00487
  8. Zubira, M. A., Zahrana, M. F. I., Zaman, M., Shahruddina, K. A. I., & Abd Hamidb, M. K. (2019). Economic, feasibility, and sustainability analysis of energy efficient distillation based separation processes. Chemical Engineering, 72. https://doi.org/10.3303/CET1972019
  9. Shukla, G. (2017). Study the Dynamic Behaviour of Distillation Column with Fundamental Modeling and Simulation by MATLAB. Int. J. Eng. Res. Technol, 6, 800-807. https://doi.org/10.17577/ijertv6is040665
  10. Kartal, F., Sezer, S., & Özveren, U. (2022). Investigation of steam and CO2 gasification for biochar using a circulating fluidized bed gasifier model in Aspen HYSYS. Journal of CO2 Utilization, 62, 102078. https://doi.org/10.1016/j.jcou.2022.102078
  11. Ariyanto, E., Yusmartini, E. S., Robiah, R., & Ardianto, F. (2024). Simulation Study of Propylene Glycol Formation from Propylene Oxide and Water: Effect of Reactor Type, Reactant Ratio, Temperature, and Reactor Configuration. IJFAC (Indonesian Journal of Fundamental and Applied Chemistry), 9(1), 26-34. https://doi.org/10.24845/ijfac.v9.i1.26
  12. Janošovský, J., Danko, M., Labovský, J., & Jelemenský, Ľ. (2019). Development of a Software Tool for Hazard Identification Based on Process Simulation. CET Journal-Chemical Engineering Transactions, 77. https://doi.org/10.3303/CET1977059
  13. Sun, P., Zhang, W., Yu, X., Zhang, J., Xu, N., Zhang, Z., Liu, M., Zhang, D., Zhang, G., Liu, Z., Yang, C., Yan, W., & Jin, X. (2022). Hydrogenolysis of Glycerol to Propylene Glycol: Energy, Tech-Economic, and Environmental Studies. Frontiers in Chemistry, 9. https://doi.org/10.3389/fchem.2021.778579
  14. Liu, L., Cui, Y., Chen, S., & Fang, S. (2020). Study on thermodynamics of glycerol hydrogenolysis to high value-added diols. E3S Web of Conferences, 165, 05003. https://doi.org/10.1051/e3sconf/202016505003
  15. Gatti, M., N., Nichio, N., N., & Pompeo, F. (2022). Advances for biorefineries: glycerol hydrogenolysis to 1,3-propylene glycol. Reactions, 3(3), 451-498. https://doi.org/10.3390/reactions3030032
  16. Monteiro, M. R., Kugelmeier, C. L., Pinheiro, R. S., Batalha, M. O., & Da Silva César, A. (2018). Glycerol from biodiesel production: Technological paths for sustainability. Renewable and Sustainable Energy Reviews, 88, 109–122. https://doi.org/10.1016/j.rser.2018.02.019
  17. Zhang, F., Wang, Y., Shan, B., Cui, P., Wang, Y., Zhu, Z., & Xu, Q. (2024). Design and optimization for the separation of xylene isomers with a novel double extractants-based extractive distillation. Journal of Industrial and Engineering Chemistry. https://doi.org/10.1016/j.jiec.2024.05.027
  18. Stanbury, P. F., Whitaker, A., & Hall, S. J. (2016). Design of a fermenter. In Elsevier eBooks (pp. 401–485). https://doi.org/10.1016/b978-0-08-099953-1.00007-7
  19. Song, F., Zhang, N., Smith, R., Zeng, Y., Li, J., & Xiao, X. (2018). Simultaneous Optimization for Integrated Cooling Water System with Chemical Processes. In Computer-aided chemical engineering/Computer aided chemical engineering (pp. 477–482). https://doi.org/10.1016/b978-0-444-64235-6.50085-1
  20. Taylor, C. J., Pomberger, A., Felton, K. C., Grainger, R., Barecka, M., Chamberlain, T. W., ... & Lapkin, A. A. (2023). A brief introduction to chemical reaction optimization. Chemical Reviews, 123(6), 3089-3126. https://doi.org/10.1021/acs.chemrev.2c00798
  21. Isac-García, J., Dobado, J. A., Calvo-Flores, F. G., & Martínez-García, H. (2015b). Lab Notebook. In Elsevier eBooks. https://doi.org/10.1016/b978-0-12-803893-2.50002-4
  22. Sinnott, R., & Towler, G. (2008). Chemical Engineering Design. United States: Elsevier Inc
  23. Yaws, C. L. (1999). Chemical Properties Handbook. p. 1-29, 185-211, 288-313. McGraw Hill Company, Inc., New York
  24. Oliveira, M., Ramos, A., Monteiro, E., & Rouboa, A. (2022). Improvement of the crude glycerol purification process derived from biodiesel production waste sources through computational modeling. Sustainability, 14(3), 1747. https://doi.org/10.3390/su14031747
  25. Margarida, B. R., & Luz, L. F., Jr. (2022). Reutilization of Crude Glycerol in a Circular Biodiesel Production Process. Chemical Engineering Transactions, 92, 445-450. https://doi.org/10.3303/CET2292075

Last update:

No citation recorded.

Last update:

No citation recorded.