skip to main content

Maximizing Ethylene Production Yield by Modifying the Methanol to Olefin Process with the Addition of a Distillation Tower

1Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, 50275, Indonesia

2Departement of Chemical Engineering, Gadjah Mada University, Sendowo, Sinduadi, Kec. Mlati, Kabupaten Sleman, Daerah Istimewa Yogyakarta, 55284, Indonesia

Received: 19 Dec 2024; Revised: 26 Dec 2024; Accepted: 26 Dec 2024; Available online: 29 Dec 2024; Published: 30 Dec 2024.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2024 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Ethylene is a feedstock that produces polyethene and other industrial chemicals such as ethylene oxide. The methanol-to-olefins process is a technology designed to transform methanol into light olefins like ethylene and propylene, which are crucial raw materials in the petrochemical industry. The first reaction involves the production of dimethyl ether and water from methanol. The second reaction consists of the conversion of dimethyl ether to ethylene and water. This paper will explain how to maximize ethylene production yield by modifying the methanol to olefin process. The process modification was carried out by adding a distillation tower. Based on process modifications increased the ethylene quantity from 21,070 tons/year to 179,400 tons/year. The case study results indicate an increasing yield of the product exiting. Copyright © 2024 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Supporting Information (SI) PDF
Keywords: Ethylene; Methanol to Olefins; Distillation; maximizing yield; Cumene Oxidation

Article Metrics:

  1. Chernyak, S.A., Corda, M., Dath, J. P., Ordomsky, V. V., & Khodakov, A. Y. (2022). Light olefin synthesis from a diversity of renewable and fossil feedstocks: state-of the-art and outlook. Chemical Society Review, 51(18), 7994-8044. DOI: 10.1039/D1CS01036K
  2. Amghizar, I., Vandewalle, L. A., Van Geem, K. M., & Marin, G. B. (2017). New trends in olefin production. Engineering, 3(2), 171-178. DOI: 10.1016/J.ENG.2017.02.006
  3. Dimian, A. C., & Bildea, C. S. (2018). Energy efficient methanol-to-olefins process. Chemical Engineering Research and Design, 131, 41-54. DOI: 10.1016/j.cherd.2017.11.009
  4. Hedayati Moghaddam, A. (2022). Simulation and optimization of separation section in methanol to olefin (MTO) process based on statistical approach. Chemical Papers, 76(8), 4787-4794. DOI: 10.1007/s11696-022-02190-4
  5. Gogate, M.R. (2019). Methanol-to-olefins process technology: current status and prospects. Petroleum Science and Technology, 37(5), 559-565. DOI: 10.1080/10916466.2018.1555589
  6. Xu, S., Zhi, Y., Han, J., Zhang, W., Wu, X., Sun, T., ... & Liu, Z. (2017). Advances in catalysis for methanol-to-olefins conversion. Advances in Catalysis, 61, 37-122. DOI: 10.1016/bs.acat.2017.10.002
  7. Kianfar, E., & Salimi, M. (2020). A review on the production of light olefins from hydrocarbons cracking and methanol conversion. Advances in Chemistry Research, 59, 1-81. DOI: 10.1515/revic-2019-0001
  8. Yu, B.Y., & Chien, I.L. (2016). Design and Optimization of the Methanol‐to‐Olefin Process. Part I: Steady‐State Design and Optimization. Chemical Engineering & Technology, 39(12), 2293-2303. DOI: 10.1002/ceat.201500654
  9. Li, N., Zhao, L., Li, D., Sun, H., Zhang, D., & Liu, G. (2022). A simultaneous design and optimization framework for the reaction and distillation sections of methanol to olefins process. Processes, 11(1), 58. DOI: 10.3390/pr11010058
  10. Alshammari, A., Kalevaru, V.N., Bagabas, A., & Martin, A. (2016). Production of Ethylene and its Commercial Importance in the Global Market. In H. Al-Megren & T. Xiao (Editor), Petrochemical Catalyst Materials, Processes, and Emerging Technologies. IGI Global Scientific Publishing. DOI: 10.4018/978-1-4666-9975-5.ch004
  11. Mohammadi, R., & Hadizadeh Harandi, M. (2023). Methanol to Olefin (MTO) Value Chain Management. New Applied Studies in Management, Economics & Accounting, 6(1), 7-17. DOI: 10.22034/nasmea.2023.176134
  12. Amghizar, I., Vandewalle, L.A., Van Geem, K.M., & Marin, G.B. (2017). New trends in olefin production. Engineering, 3(2), 171-178. DOI: 10.1016/J.ENG.2017.02.006
  13. Kianinia, M., & Abdoli, S.M. (2021). Efficient Production of Light Olefin Based on Methanol Dehydration: Simulation and Design Improvement. Combinatorial Chemistry & High Throughput Screening, 24(4), 581-586. DOI: 10.2174/1386207323666200720104614
  14. Rostami, R.B., Lemraski, A.S., Ghavipour, M., Behbahani, R.M., Shahraki, B.H., & Hamule, T. (2016). Kinetic modelling of methanol conversion to light olefins process over silicoaluminophosphate (SAPO-34) catalyst. Chemical Engineering Research and Design, 106, 347–355. DOI: 10.1016/j.cherd.2015.10.0
  15. Tan, H., & Cong, L. (2023). Modeling and Control Design for Distillation Columns Based on the Equilibrium Theory. Processes, 11(2), 607. DOI: 10.3390/pr11020607
  16. Ganesh, R.M., Manoharan, S., Marimuthu, C. N., & Senthil, J. (2021). Distillation Column-Modelling, Control and Optimization -A Review. International Journal of Mechanical Engineering, 6(3), 1123-1132. DOI: 10.1016/b978-0-12-802239-9.00016-5
  17. Fitriah, F., & Sari, D.A. (2023). Optimization of distillation column reflux ratio for distillate purity and process energy requirements. International Journal of Basic and Applied Science, 12(2), 72-81. DOI: 10.35335/ijobas.v12i2.260
  18. Xu, Y., Tang, Y., He, C., Shu, Y., Chen, Q.L., & Zhang, B.J. (2022). Internal coupling process of membrane/distillation column hybrid configuration for ethylene/ethane separation. Chemical Engineering and Processing-Process Intensification, 177, 108982. DOI: 10.1016/j.cep.2022.108982
  19. Moghaddam, H. (2022). A. Simulation and optimization of separation section in methanol to olefin (MTO) process based on statistical approach. Chem. Pap. 76, 4787–4794. DOI: 10.1007/s11696-022-02190-4
  20. Alshammari, A., Kalevaru, V.N., Bagabas, A., & Martin, A. (2016). Production of ethylene and its commercial importance in the global market. In Petrochemical Catalyst Materials, Processes, and Emerging Technologies (pp. 82-115). IGI Global. DOI: 10.4018/978-1-4666-9975-5.CH004
  21. Karimi, A., Soltani, H., & Hasanzadeh, A. (2020). An analysis of increasing the purity of ethylene production in the ethylene fractionation column by the genetic algorithm. Chemical Product and Process Modeling, 15(3), 20190088. DOI: 10.1515/cppm-2019-0088
  22. Chen, Y., Kuo, M.J., Lobo, R., & Ierapetritou, M. (2024). Ethylene production: process design, techno-economic and life-cycle assessments. Green Chemistry, 26 (5), 2903-2911. DOI: 10.1039/d3gc03858k
  23. Treger, Y.A., & Rozanov, V.N. (2016). Technologies for the synthesis of ethylene and propylene from natural gas. Review Journal of Chemistry, 6 (1), 83-123. DOI: 10.1134/S2079978016010039
  24. Leonzio, G., Chachuat, B., & Shah, N. (2023). Towards ethylene production from carbon dioxide: Economic and global warming potential assessment. Sustainable Production and Consumption, 43, 124-139. DOI: 10.1016/j.spc.2023.10.015
  25. Bhusal, S.R. (2021). Carbon footprint of polyethylene produced from CO2 and renewable H2 via MTO route. Master’s Thesis, Department of Environmental Technology, Lappeenranta–Lahti University of Technology

Last update:

No citation recorded.

Last update:

No citation recorded.