Department of Chemical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang 50275, Indonesia
BibTex Citation Data :
@article{JCERP20169, author = {Shelma Zulaika Putri and Shafa Chairunnisa and Ario Satria Nugraha}, title = {Utilization of Heat from The Reactor's Outlet Stream in Formaldehyde Production to Reduce Energy Usage in The Heat Exchanger}, journal = {Journal of Chemical Engineering Research Progress}, volume = {1}, number = {2}, year = {2024}, keywords = {Formaldehyde; Process modification; Energy efficiency; Net-energy}, abstract = { Global production of formaldehyde has consistently risen over the past ten years, highlighting its extensive industrial applications and high demand across various sectors worldwide. However, its production continues to consume a significant amount of energy. The aim of this paper is to investigate and propose strategies for enhancing energy efficiency in formaldehyde production processes. Specifically, the study focuses on harnessing heat from the reactor's outlet stream to minimize the energy consumption associated with heat exchangers. By analyzing and optimizing the utilization of this heat source, the paper aims to contribute to sustainable manufacturing practices by reducing overall energy requirements and operational costs in formaldehyde production facilities. The process modification was simulated using Aspen HYSYS and the comparison of net-energy between the basic and the modified process is calculated using the net-energy formula. The results obtained that the Net-Energy (NE) value for both basic and modified process is 316,286,815.4 kJ/h and 125,757,792.9 kJ/h. This shows that the modified process has better energy efficiency compared to the basic process as the net-energy value zero. Therefore, this modification enhances the energy efficiency of the formaldehyde production process through methanol oxidation. Copyright © 2024 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group. This is an open access article under the CC BY-SA License ( https://creativecommons.org/licenses/by-sa/4.0 ). }, issn = {3032-7059}, pages = {114--121} doi = {10.9767/jcerp.20169}, url = {https://journal.bcrec.id/index.php/jcerp/article/view/20169} }
Refworks Citation Data :
Global production of formaldehyde has consistently risen over the past ten years, highlighting its extensive industrial applications and high demand across various sectors worldwide. However, its production continues to consume a significant amount of energy. The aim of this paper is to investigate and propose strategies for enhancing energy efficiency in formaldehyde production processes. Specifically, the study focuses on harnessing heat from the reactor's outlet stream to minimize the energy consumption associated with heat exchangers. By analyzing and optimizing the utilization of this heat source, the paper aims to contribute to sustainable manufacturing practices by reducing overall energy requirements and operational costs in formaldehyde production facilities. The process modification was simulated using Aspen HYSYS and the comparison of net-energy between the basic and the modified process is calculated using the net-energy formula. The results obtained that the Net-Energy (NE) value for both basic and modified process is 316,286,815.4 kJ/h and 125,757,792.9 kJ/h. This shows that the modified process has better energy efficiency compared to the basic process as the net-energy value zero. Therefore, this modification enhances the energy efficiency of the formaldehyde production process through methanol oxidation. Copyright © 2024 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Article Metrics:
Last update:
Authors who publish in the Journal of Chemical Engineering Research Progress (JCERP) retain full copyright ownership of their work. In keeping with the journal’s commitment to open access, all articles are published under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).
This license permits anyone to access, use, share, adapt, remix, transform, and build upon the work for any purpose, including commercial use, provided that appropriate credit is given to the original author or authors, a link to the license is provided, changes to the work (if any) are clearly indicated, and any derivative works are distributed under the same license.
Authors are encouraged to disseminate their work as widely as possible. They retain the right to reuse their published article in future scholarly works, such as books, conference presentations, or teaching materials. They may also deposit the final published version in institutional or subject-based repositories, and share it freely on personal websites, academic platforms, or professional networks. These rights are fully preserved under the CC BY-SA license, and all such uses must comply with its terms.
Readers and third parties may also use the content in accordance with the CC BY-SA license. This includes the ability to reproduce, modify, and build upon the article, even for commercial purposes, as long as proper attribution is given, and any resulting work is distributed under the same license.
License to Publish Agreement (Non-Exclusive License for Publishing Rights)
To enable publication and global dissemination of accepted manuscripts, JCERP, published by UPT Laboratorium Terpadu, Diponegoro University in collaboration with BCREC Publishing Group, requires that authors grant the publisher a non-exclusive license to publish the work. This license authorizes the publisher to reproduce, distribute, and communicate the article to the public in all forms and media. The license to publish does not transfer copyright; authors remain the sole copyright holders.
This arrangement is formalized through a License to Publish Agreement, which the corresponding author must complete after the manuscript is accepted for publication. The agreement confirms that the author or authors grant the publisher the non-exclusive right to publish the article and to distribute it under the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).
Authors retain all other rights to their work. They remain free to use and share their article in any manner consistent with the terms of the CC BY-SA license, including in future publications, educational settings, and commercial applications, provided proper attribution is given and the license is preserved.
After acceptance, the corresponding author will receive an email containing instructions for completing and electronically signing the License to Publish Agreement. The signed agreement must be returned to the Editorial Office in order to proceed with publication. The License to Publish Agreement form is available for download on the journal’s official website.
The non-exclusive Transfer Agreement for Publishing Right (CTAP) Form can be downloaded here: [Transfer Agreement for Publishing Right (CTAP) Form JCERP 2024]
The (non-exclusive) publishing right form should be signed electronically and send to the Editorial Office in the form of original e-mail below: Prof. Dr. I. Istadi (Editor-in-Chief)Editorial Office of Journal of Chemical Engineering Researc ProgressLaboratory of Plasma-Catalysis (R3.5), UPT Laboratorium Terpadu, Universitas DiponegoroJl. Prof. Soedarto, Semarang, Central Java, Indonesia 50275Telp/Whatsapp: +62-81-316426342E-mail: jcerp[at]live.undip.ac.id
(This policy statements has been updated at 25th March 2025)