skip to main content

Improving Net Energy of Cumene Hydroperoxide Production using Cumene Oxidation Process Through Removing Cooler on the Recycle System to Achieve Energy Efficiency and Reduce Production Cost

Department of Chemical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, 50275, Indonesia

Received: 19 Dec 2024; Revised: 20 Dec 2024; Accepted: 26 Dec 2024; Available online: 28 Dec 2024; Published: 30 Dec 2024.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2024 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

This study investigates a modification to the cumene hydroperoxide (CHP) production process by removing the cooler between the reactor and separator, aiming to improve energy efficiency. The simulation results show that the modified process requires 245,259,223.09 kJ/h, compared to 265,992,099.05 kJ/h for the basic process, representing a significant energy reduction of 20,732,875.95 kJ/h. The removal of the cooler also leads to lower capital and operating costs, with annual savings of $111,900 in operating costs and $103,580 in utilities. This modification enhances the overall energy efficiency and cost-effectiveness of the CHP production process while maintaining product selectivity and operational performance. Copyright © 2024 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Supporting Information (SI) PDF
Keywords: Cumene Hydroperoxide; Energy Efficiency; Process Simulation; Aspen HYSYS; Cost Reduction

Article Metrics:

  1. Baynazarov, I.Z., Lavrenteva, Y.S., Akhmetov, I.V., & Gubaydullin, I.M. (2018, December). Mathematical model of process of production of phenol and acetone from cumene hydroperoxide. In Journal of Physics: Conference Series (Vol. 1096, No. 1, p. 012197). IOP Publishing. DOI: 10.1088/1742-6596/1096/1/012197
  2. Chen, Z., Deng, Y., Yang, G., Zhu, Y.N., Zhang, Q., Liu, Z., ... & Peng, F. (2023). Understanding of Cumene Oxidation Catalyzed by Metal–Nitrogen–Carbon through Theoretical Simulations and Kinetic Validation. ACS Sustainable Chemistry & Engineering, 11(14), 5773-5781. DOI: 10.1021/acssuschemeng.3c00676
  3. Corre, O., Saikaly, K., & Rosen, M. (2012). Effects on CHP plant efficiency of H2 production through partial oxydation of natural gas over two group VIII metal catalysts. International Journal of Hydrogen Energy. 37. 10380–10389. DOI: 10.1016/j.ijhydene.2012.03.121
  4. Gao, M., Wang, Q., Wang, N., Ma, Z., & Li, L. (2022). Application of Green Design and Manufacturing in Mechanical Engineering: Education, Scientific Research, and Practice. Sustainability, 14(1), 237. DOI: 10.3390/su14010237
  5. Gronnow, M., White, R., Clark, J., & Macquarrie, D. (2005). Energy Efficiency in Chemical Reactions: A Comparative Study of Different Reaction Techniques. Organic Process Research & Development. 9. DOI: 10.1021/op0498060
  6. Kharlampidi, K.E., Tereshchenko, К.A., Nurmurodov, T.S., Shiyan, D.A., Miroshkin, N.P., Ziyatdinov, N. N., ... & Ulitin, N. V. (2020). The kinetic modeling of cumene oxidation taking into account oxygen mass transfer. Chemical Engineering Journal, 392, 123811. DOI: 10.1016/j.cej.2019.123811
  7. Shen, S.J., Tseng, A.H., Shi, C. C., & Yu, B.Y. (2023). Development of the cumene oxidation process: Rigorous design, optimization, and control. Chemical Engineering Research and Design, 200, 602-614. DOI: 10.1016/j.cherd.2023.11.025
  8. Radzi, A.R.M. & Faizal, T.A., Halim, N.A., & Kasim, N.Z. (2021). Sustainability assessment of chemical processes via sustainability evaluator in conjunction with Aspen HYSYS. International Journal of Environment and Waste Management. 27, 147. DOI: 10.1504/IJEWM.2021.10034224
  9. Wang, Y.-Y., Zhang, D.-F., Zhang, H.-R., Liu, W.-J., Chen, Z.-Q., Jiang, J.-C., & Ni, L. (2024). Process Optimization and Thermal Hazard Study for the Preparation of TBPB by a Two–Step Reaction. Sustainability, 16(19), 8568. DOI: 10.3390/su16198568
  10. Weber, M., Daldrup, J.B.G., & Weber, M. (2016). Noncatalyzed radical chain oxidation: Cumene hydroperoxide. Liquid Phase Aerobic Oxidation Catalysis: Industrial Applications and Academic Perspectives: Industrial Applications and Academic Perspectives, 15-31. DOI: 10.1002/9783527690121.ch2
  11. Wu, S. H. (2013). Runaway reaction and thermal explosion evaluation of cumene hydroperoxide (CHP) in the oxidation process. Thermochimica Acta, 559, 92-97. DOI: 10.1016/j.tca.2013.02.028
  12. Xie, T., Xia, S., & Wang, C. (2022). Multi-Objective Optimization of Braun-Type Exothermic Reactor for Ammonia Synthesis. Entropy, 24(1), 52. DOI: 10.3390/e24010052
  13. Yaws, C.L. (2001). Chemical Properties Handbook: Physical, Thermodynamic, Environmental, Transport, Safety, and Health Related Properties for Organic and Inorganic Chemicals. McGraw-Hill
  14. Joback, K., & Reid, R. (1987). Estimation of Pure- Component Properties from Group-Contributions. Chemical Engineering Communications, 57(1–6), 233–243. DOI: 10.1080/00986448708960487
  15. Van-Chin-Syan, Yu.Ya., Dolbneva, T.N., Dikii, M.A., & Cuchmarev, S.K. (1984). Thermochemistry of derivatives of isopropylbenzene and p-diisopropylbenzene. Russian Journal of Physical Chemistry, 58, 1783-1785. DOI: 10.1021/je990118z
  16. Lu, Y., Sheng, X., Zhang, J., Wang, Y., Du, L., & Zhu, J. (2022). Cumene autooxidation to cumene hydroperoxide based on a gas-liquid microdispersion strategy. Chemical Engineering and Processing - Process Intensification, 174, 108861. DOI: 10.1016/j.cep.2022.108861
  17. Ulitin, N.V., Tereshchenko, K. A., Novikov, N.A., Shiyan, D.A., Lyulinskaya, Y.L., Nurullina, N.M., Denisova, M.N., Anisimova, V.I., Nurmurodov, T.S., & Kharlampidi, K.E. (2023). Catalytic properties of metals of the 2nd and 12th groups in cumene oxidation. Applied Catalysis A: General, 653, 119044. DOI: 10.1016/j.apcata.2023.119044
  18. Rider, C.V., Chan, P., Herbert, R.A., Kissling, G.E., Fomby, L.M., Hejtmancik, M.R., ... & Kadiiska, M.B. (2016). Dermal exposure to cumene hydroperoxide: assessing its toxic relevance and oxidant potential. Toxicologic Pathology, 44(5), 749-762. DOI: 10.1177/01926233166367
  19. You, M.L. (2016). Thermal hazard evaluation of cumene hydroperoxide-metal ion mixture using DSC, TAM III, and GC/MS. Molecules, 21(5), 562. DOI: 10.3390/molecules21050562
  20. Yu, C.F., Liu, S.H., Yuan, L., & Wei, D.D. (2023). Thermal decomposition kinetics and mechanism investigation of cumene hydroperoxide under inert gas: A novel experimental method. Process Safety and Environmental Protection, 172, 408-416. DOI: 10.1016/j.psep.2023.02.039
  21. Praveen Kumar, K., Selvin, R., Kumari, P., Selva Roselin, L., Arul, N., & Bououdina, M. (2010). Selective decomposition of cumene hydroperoxide into phenol and acetone over nanocrystalline ZSM-5. International Journal of Materials Engineering Innovation, 1(3-4), 417-425. DOI: 10.1504/IJMatEI.2010.035166

Last update:

No citation recorded.

Last update:

No citation recorded.