skip to main content

Palladium(0) Nanoparticles Immobilized onto Silica/Starch Composite: Sustainable Catalyst for Hydrogenations and Suzuki Coupling

Department of Chemistry, University of Jammu, Jammu-180 006, India

Received: 22 Feb 2019; Revised: 26 Jun 2019; Accepted: 18 Jun 2019; Available online: 30 Sep 2019; Published: 1 Dec 2019.
Editor(s): Hadi Nur
Open Access Copyright (c) 2019 by Authors, Published by BCREC Group under http://creativecommons.org/licenses/by-sa/4.0.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

The present paper aims to give insight into the art in the field of the synthesis, characterization and applications of Pd(0) nanoparticles immobilized onto silica/starch composite (SS-PdNPs) for hydrogenations and Suzuki coupling. Metal(0) nanoparticles immobilized onto silica/starch composite [SS-MNPs] were prepared from different metal acetylacetonate complexes [Co(acac)2], [Cu(acac)2], [Pd(acac)2],  [Ru(acac)3], [Mn(acac)3], [Co(acac)3] by immobilizing onto silica/starch composite, followed by reduction with NaBH4. Excellent yield of the products, reusability and the facile work-up makes SS-PdNPs a unique catalyst for the reduction of nitroarenes/carbonyl compounds, a,b unsaturated carbonyl compounds and Suzuki coupling under environmentally benign reaction conditions. All the catalysts were characterized by Fourier Transform Infra Red (FTIR), Atomic Absorption Spectroscopy (AAS) analyses,  while the most active catalyst [SS-PdNPs] was further characterized by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). 

Keywords: Silica/starch composite; palladium(0) nanoparticles; hydrogenations; Suzuki coupling; heterogeneous catalysis
Funding: UGC, New Delhi for financial support (SAP, DRS I and Major research project, F-41-281/2012 (SR).

Article Metrics:

  1. Siracusa, V., Rocculi, P., Romani, S., Rosa, M.D. (2008). Biodegradable polymers for foodpackaging: a review. Trends in Food Science and Technology, 19: 634-643
  2. Karim, A.A., Tie, A.P.L., Manan, D.M.A., Zaidul, I.S.M. (2008). Starch from the Sago (Metroxylon sagu) Palm Tree-Properties, Prospects, and Challenges as a New Industrial Source for Food and Other Uses. Comprehensive Reviews in Food Science and Food Safety, 7: 215–228
  3. Gutowska, A., Jeong, B., Jasionowski, M. (2001). Injectable gels for tissue engineering. Anat. Rec, 263: 342-349
  4. Livage, J., Coradin, T., Roux, C. (2001). Encapsulation of biomolecules in silica gel. J. Phys. Condens. Matter, 13: 673-691
  5. Ren, L., Tsuru, K., Hayahawa, S., Osaka, A. (2002). A Novel approach to fabricate porous gelatin-siloxane hybrids for bone tissue engineering. Biomaterials, 23: 4765-4773
  6. Sakai, S., Ono, T., Ijima, H., Kawakami, K. (2002). In vitro and in vivo evaluation of alginate/sol-gel synthesized aminopropyl silicate/alginate membrane for bioartificial pancreas. Biomaterials, 23: 4177-4183
  7. Schuleit, M., Luisi, P.L. (2001). Enzyme immobilization in silica‐hardened organogels. Biotechnol. Bioeng., 72: 249-253
  8. Alebooyeh, R., Nafchi, A.M., Jokar, M. (2012). The Effects of ZnOnanorodson the Characteristics of Sago Starch Biodegradable Films. J. Chem. Heath Risks, 2: 13-16
  9. Nafchi, A.M., Moradpour, M., Saeidi, M., Alias, A.K. (2013). Thermoplastic starches: Properties, challenges, and prospects. Starch-Srarke, 65: 61-72
  10. Li, J.H., Hong, R.Y., Li, M.Y., Li, H.Z., Zheng, Y.J. (2009). Effects of ZnO nanoparticles on the mechanical and antibacterial properties of polyurethane coatings. Prog. Org. Coat., 64: 504-509
  11. Laun, J., Wang, S., Hu, Z., Zhang, L. (2012). Synthesis Techniques, Properties and Applications of Polymer Nanocomposites. Curr. Org. Synth., 9: 114-136
  12. Reddy, J.K., Motokura, K., Koyama, T., Miyaji, A., Baba, T. (2012). Effect of morphology and particle size of ZSM-5 on catalytic performance for ethylene conversion and heptane cracking. J. Catal., 289: 53-61
  13. Pushkarev, V.V., An. K., Alayoglu, S., Beaumont, S.K., Somorjai, G.A. (2012). Hydrogenation of benzene and toluene over size controlled Pt/SBA-15 catalysts: Elucidation of the Pt particle size effect on reaction kinetics. J. Catal., 292: 64-72
  14. Pogorelic, I., Litvic, M.F., Merkas, S., Ljubic, G., Cepanec, I., Litvic, M. (2007). Rapid, efficient and selective reduction of aromatic nitro compounds with sodium borohydride and Raney nickel. J. Mol. Catal. A: Chem., 274: 202-207
  15. Maity, R., Meer, M.V., Hohloch, S., Sarkar, B. (2015). Di- and Trinuclear Iridium(III) Complexes with Poly-Mesoionic Carbenes Synthesized through Selective Base-Dependent Metalation. Organometallics, 34: 3090-3096
  16. Mahdavi, H., Tamami, B. (2005). Reduction of nitro-aryl compounds with zinc in the presence of poly[N-(2-aminoethyl)acrylamido] trimethylammonium chloride as a phase-transfer catalyst. Synth. Commun., 35: 1121-1127
  17. Smith, G.V., Nothesiz, F. (1999). Heterogeneous Catalysis in Organic Chemistry. Academic Press, New York
  18. Scheuerman, R.A., Tumelty, D. (2000). The reduction of aromatic nitro groups on solid supports using sodium hydrosulfite (Na2S2O4). Tetrahedron Lett., 41: 6531-6535
  19. Kumar, J.S.D., Ho, M.M., Toyokuni, T. (2001). Simple and chemoselective reduction of aromatic nitro compounds to aromatic amines: reduction with hydriodic acid revisited. Tetrahedron Lett., 42: 5601-5604
  20. Mdleleni, M.M., Rinker, R., Ford, P.C. (2003). Reduction of aromatic nitro compounds as catalyzed by rhodium trichloride under water–gas shift reaction conditions. J. Mol. Catal. A: Chem., 204-205: 125-131
  21. Chen, Y., Qiu, J., Wang, X., Xiu, J. (2006). Preparation and application of highly dispersed gold nanoparticles supported on silica for catalytic hydrogenation of aromatic nitro compounds. J. Catal., 242: 227-230
  22. Kumbhar, P.S., Valnte, J.S., Figueras, F. (1998). Reduction of aromatic nitro compounds with hydrazine hydrate in the presence of the iron(III) oxide-MgO catalyst prepared from a MgFe hydrotalcite precursor. Tetrahedron Lett., 39: 2573-2574
  23. Ghosh, S.K., Mandal, M., Kundu, S., Nath, S., Pal, T. (2004). Bimetallic Pt-Ni nanoparticles can catalyze reduction of aromatic nitro compounds by sodium borohydride in aqueous solution. Appl. Catal. A: Gen., 268: 61-66
  24. Ren, P.D., Pan, S.F., Dang, T.W., Wu, H.S. (1995). The Novel Reduction Systems: NaBH4-SbCl3 OR NaBH4-BiCl3 for Conversion of Nitroarenes to Primary Amines. Synth. Commun., 25: 3799-3803
  25. Nagaraja, D., Pasha, M.A. (1999). Reduction of aryl nitro compounds with aluminiumNH4Cl: effect of ultrasound on the rate of the reaction. Tetrahedron Lett., 40: 7855-7858
  26. Yu, C., Liu, B., Hu, L. (2001). Samarium(0) and 1,1‘-Dioctyl-4,4‘-Bipyridinium Dibromide: A Novel Electron-Transfer System for the Chemoselective Reduction of Aromatic Nitro Groups. J. Org. Chem., 66: 919-924
  27. Rylander, P.N. (1967). Catalytic Hydrogenation over Platinum Metals, Academic Press, New York 21
  28. Sterk, D., Stephan, M.S., Mohar, B. (2004). Transfer hydrogenation of activated ketones using novel chiral Ru(II)-N-arenesulfonyl-1,2-diphenylethylenediamine complexes. Tetrahedron Lett., 45: 535-537
  29. Kaluzna, I.A., Feske, B.D., Wittayanan, W., Ghiviriga, I., Stewart, J.D. (2005). Stereoselective, Biocatalytic Reductions of a-Chloro-b-keto Esters. J. Org. Chem., 70: 342-345
  30. Cook, P.L. (1962). Selective reduction of aldehydes to alcohols by calcined Ni-Al hydrotalcite. J. Org. Chem., 27: 3873-3877
  31. Figadhre, B., Chaboche, C., Franck, X., Peyrat, J.F., Cave, A. (1994). Carbonyl reduction of functionalized Aldehydes and Ketone by Tri-n-butyltin Hydride and SiO2. J. Org. Chem., 59: 7138-7141
  32. Babler, J.H., Sarussi, S.J. (1981). Reduction of aldehydes and ketones using sodium formate in 1-methyl-2-pyrrolidinone. J. Org. Chem., 46: 3367-3369
  33. Zhang, W., Shi, M. (2006). Reduction of activated carbonyl groups by alkylphosphines: formation of a-hydroxy esters and ketones. Chem. Commun., 1218-1220
  34. Wang, Z.G., Wroblewski, A.E., Verkade, J.G. (1999). P(MeNCH2CH2)3N: An Efficient Promoter for the Reduction of Aldehydes and Ketones with Poly(methylhydrosiloxane). J. Org. Chem., 64: 8021-8023
  35. Sarkar, D.C., Das, A.R., Ranu, B.C. (1990). Use of zinc borohydride as an efficient and highly selective reducing agent. Selective reduction of ketones and conjugated aldehydes over conjugated enones. J. Org. Chem., 55: 5799-5801
  36. Kim, J., De Castro, K.A., Lim, M., Rhee, H. (2010). Reduction of aromatic and aliphatic keto esters using sodium borohydride/MeOH at room temperature: a thorough investigation. Tetrahedron, 66: 3995-4001
  37. Borch, R.F., Bernstein, M.D., Durst, H.D. (1971). Cyanohydridoborate anion as a selective reducing agent. J. Am. Chem. Soc., 93: 2897-2904
  38. Cha, J.S., Moon, S.J., Park, J.H. (2001), A Solution of Borane in Tetrahydrofuran. A Stereoselective Reducing Agent for Reduction of Cyclic Ketones to Thermodynamically More Stable Alcohols. J. Org. Chem., 66: 7514-7515
  39. Burkhardt, E.R., Matos, K. (2006). Boron Reagents in Process Chemistry: Excellent Tools for Selective Reductions. Chem. Rev., 106: 2617-2650
  40. Lee, H.Y., An, M. (2003). Selective 1,4-reduction of unsaturated carbonyl compounds using Co2(CO)8–H2O. Tetrahedron Lett., 44: 2775-2778
  41. Yu, H.T., Kang, R.H., Yang, X.M.O. (2000). Recent Development in the Selective Reduction of α,β-Unsaturated Carbonyl Compounds. Chin. J. Org. Chem., 20: 441-453
  42. McCarthy, M., Guiry, P.J. (2001). Axially chiral bidentate ligands in asymmetric catalysis. Tetrahedron, 57: 3809-4058
  43. Hazarika, M.J., Barua, N.C. (1989). A simple procedure for selective reduction of a,b-unsaturated carbonyl compounds using Al-NiCl2system. Tetrahedron Lett., 30: 6567-6570
  44. Petrier, C., Luche, J.L. (1987). Ultrasonically improved reductive properties of an aqueous ZnNiCl2 system-1 selective reduction of a,b-unsaturated carbonyl compounds. Tetrahedron Lett., 28: 2347-2350
  45. Alonso, F., Osante, I., Yus, M. (2006). Conjugate Reduction of a,b-Unsaturated Carbonyl Compounds Promoted by Nickel Nanoparticles. Synlett., 18: 3017-3020
  46. Saikia, A., Barthakur, M.G., Boruah, R.C. (2005). Efficient Role of Mg-ZnCl2 for Selective Reduction of a,b-Unsaturated ­Carbonyl Compounds in Aqueous Medium. Synlett., 3: 523-525
  47. Hassan, J., Sevignon, M., Gozzi, C., Schulz, E., Lemaire, M. (2002). Aryl−Aryl Bond Formation One Century after the Discovery of the Ullmann Reaction. Chem. Rev., 102: 1359-1469
  48. Smith, M.B., March, J. (1992). Advanced Organic Chemistry, 4th ed.; Wiley: New York, pp 539
  49. Kovacic, P., Jones, M.B. (1987). Dehydro coupling of aromatic nuclei by catalyst-oxidant systems: poly(p-phenylene). Chem. Rev., 87: 357-379
  50. Gomberg, M., Bachmann, W.E. (1924). The synthesis of biaryl compounds by means of the diazo reaction. J. Am. Chem. Soc., 42: 2339-2343
  51. Smith, M.B., March, J. (1992). Advanced Organic Chemistry, 4th ed.; Wiley: New York, pp 715
  52. Ullman, F., Bielecki, J. (1901). Ueber Synthesen in der Biphenylreihe. J. Chem. Ber., 34: 2174-2185
  53. Hassan, J., Sevignon, M., Gozzi, C., Schulz, E., Lemaire, M. (2002). Aryl−Aryl Bond Formation One Century after the Discovery of the Ullmann Reaction. Chem. Rev., 102: 1359-1469
  54. Miura, M., Nomura, M. (2002). Direct Arylation via Cleavage of Activated and Unactivated C-H Bonds. Top. Curr. Chem., 219: 212-237
  55. Kosugi, M., Sasazawa, K., Shimizu, Y., Migita, T. (1977). Reactions of allyltin compounds iii. allylation of aromatic halides with allyltributyltin in the presence of tetrakis(triphenylphosphine)palladium(o). Chem. Lett., 6: 301-302
  56. Kosugi, M., Shimizu, Y., Migita, T. (1977). Alkylation, arylation, and vinylation of acyl chlorides by means of organotin compounds in the presence of catalytic amounts of tetrakis(triphenylphosphine)palladium(o). Chem. Lett., 6: 1423-1424
  57. Kosugi, M., Hagiwara, I., Migita, T. (1983). 1-Alkenylation on α-position of ketone: palladium-catalyzed reaction of tin enolates and 1-bromo-1-alkenes. Chem. Lett., 12: 839-840
  58. Stille, J.K. (1986). The Palladium‐Catalyzed Cross‐Coupling Reactions of Organotin Reagents with Organic Electrophiles [New Synthetic Methods (58)]. Angew. Chem. Int. Ed., 25: 508-524
  59. King, O., Okukado, N., Negishi, E. (1977). Highly general stereo-, regio-, and chemo-selective synthesis of terminal and internal conjugated enynes by the Pd-catalysed reaction of alkynylzinc reagents with alkenyl halides. J. Chem. Soc., Chem. Commun., 19: 683-684
  60. Lipshutz, B.H., Siegmann, K., Garcia, E., Kayser, F. (1993). Synthesis of unsymmetrical biaryls via kinetic higher order cyanocuprates: scope, limitations, and spectroscopic insights. J. Am. Chem. Soc., 115: 9276-9282
  61. Miyaura, N., Suzuki, A. (1995). Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds. Chem. Rev., 95: 2457-2483
  62. Tamao, K., Sumitani, K., Kumada, M. (1972). Selective carbon-carbon bond formation by cross-coupling of Grignard reagents with organic halides. Catalysis by nickel-phosphine complexes. J. Am. Chem. Soc., 94: 4374-4376
  63. Corriu, R.J.P., Masse, J.P. (1972). Activation of Grignard reagents by transition-metal complexes. A new and simple synthesis of trans-stilbenes and polyphenyls. J. Chem. Soc., Chem. Commun., 3: 144a
  64. Kumada, M. (1980). Nickel and palladium complex catalyzed cross-coupling reactions of organometallic reagents with organic halides. Pure Appl. Chem., 52: 669-679
  65. Marion, N., Navarro, O., Mei, J., Stevens, E.D., Scott, N.M., Nolan, S.P. (2006). Modified (NHC)Pd(allyl)Cl (NHC = N-Heterocyclic Carbene) Complexes for Room-Temperature Suzuki−Miyaura and Buchwald−Hartwig Reactions. J. Am. Chem. Soc., 128: 4101-4111
  66. Billingsley, K.L., Anderson. K.W., Buchwald, S.L. (2006). A Highly Active Catalyst for Suzuki-Miyaura Cross-Coupling Reactions of Heteroaryl Compounds. Angew. Chem. Int. Ed., 45: 3484-3488
  67. Maity, R., Mekic, A., Meer, M.V., Verma, A., Sarkar, B. (2015). Triply cyclometalated trinuclear iridium(III) and trinuclear palladium(II) complexes with a tri-mesoionic carbene ligand. Chem. Commun., 51: 15106-15109
  68. Majumder, A., Naskar, R., Roy, P., Maity, R. (2019). Homo‐ and Heterobimetallic Complexes Bearing NHC Ligands: Applications in α‐Arylation of Amide, Suzuki–Miyaura Coupling Reactions, and Tandem Catalysis. Eur. J. Inorg. Chem., 2019: 1810-1815
  69. Sodhi, R.K., Paul, S. (2015). Conversion of α,β-unsaturated ketones to 1,5-diones via tandem retro-Aldol and Michael addition using Co(acac)2 covalently anchored onto amine functionalized silica. Tetrahedron Lett., 56: 1944-1948
  70. Sodhi, R.K., Changotra, A., Paul, S. (2014). Metal Acetylacetonates Covalently Anchored onto Amine Functionalized Silica/Starch Composite for the One-Pot Thioetherification and Synthesis of 2H-Indazoles. Catal Lett., 144:1819-1831
  71. Sodhi, R.K., Paul, S., Clark, J.H. (2012). A comparative study of different metal acetylacetonates covalently anchored onto amine functionalized silica: a study of the oxidation of aldehydes and alcohols to corresponding acids in water. Green Chem., 14:1649-1656
  72. Sodhi, R.K., Paul, S. (2011). Nanosized Mn(acac)3 Anchored on Amino Functionalized Silica for the Selective Oxidative Synthesis of 2-arylbenzimidazoles, 2-arylbenzothiazoles and Aerobic Oxidation of Benzoins in Water. Catal Lett., 141: 608-615
  73. Jamwal, N., Sodhi, R.K., Gupta, P., Paul, S. (2011). Nano Pd(0) supported on cellulose: A highly efficient and recyclable heterogeneous catalyst for the Suzuki coupling and aerobic oxidation of benzyl alcohols under liquid phase catalysis. Int. J. Biol. Macromol., 49: 930-935

Last update:

No citation recorded.

Last update:

No citation recorded.