skip to main content

Modification Strategies of Copper Molybdate-based Photocatalysts for Degradation of Organic Compounds in Wastewater: A Mini Review

1Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, 26300 Gambang, Pahang, Malaysia

2Faculty of Manufacturing and Mechatronic Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, 26600 Pekan, Pahang, Malaysia

3Department of Biotechnology Engineering, Kulliyyah of Engineering, International Islamic University, 50728 Kuala Lumpur, Malaysia

4 Petroleum and Chemical Engineering Programme, Faculty of Engineering, Universiti Teknologi Brunei, Jalan Tungku Link Gadong, BE1410, Brunei Darussalam

View all affiliations
Received: 6 Jan 2026; Revised: 14 Jan 2026; Accepted: 15 Jan 2026; Available online: 30 Jan 2026; Published: 30 Aug 2026.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2026 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Visible-light photocatalysis has emerged as a sustainable tertiary‐treatment option. Within this arena, copper molybdate (CuMoO4) is attractive because of its narrow bandgap enables direct solar harvesting while relying on earth-abundant elements. Yet pristine CuMoO4 suffers from low surface area (< 10 m2g-1), rapid electron-hole recombination and Cu2+ photocorrosion, which curb quantum yields and raise secondary-pollution concerns. This mini review critically synthesizes research published between 2019 and 2025 on strategies devised to surmount these limitations. Four major areas are surveyed: (i) morphology engineering that multiplies active-site density and deepens light scattering; (ii) plasmonic or single-atom noble-metal decoration that extends spectral response and accelerates interfacial charge separation via localized surface plasmon resonance; (iii) band-gap and defect modulation through doping or oxygen-vacancy creation, narrowing band gap and introducing long-lived trapping states and (iv) construction of p-n heterojunctions (e.g., ZnO/CuMoO4, graphitic carbon nitride/copper molybdate (g-C3N4/CuMoO4) that yield order-of-magnitude rate enhancements by spatially separating redox half-reactions. The synthesis approaches, from hydrothermal and co-precipitation to thermal-decomposition and solid-state reactions directly influence crystallinity, morphology and defect chemistry, with optimal hydrothermal conditions (180 oC, 10 h) producing high-purity α-CuMoO4 microspheres and oxygen-vacancy-rich Cu-rich phases delivering up to a 0.5 eV bandgap reduction. Emphasis is placed on correlating structural descriptors with pollutant-mineralization kinetics and on emerging green-synthesis trends. Remaining challenges and research priorities including stability against Cu leaching, scalable fabrication and in-situ mechanistic probes are highlighted to guide future catalyst design.

Keywords: Visible-light Photocatalysis; Copper Molybdate; Morphology Engineering; Defect Modulation; p-n Heterojunctions.
Funding: internal grant of UMPSA (RDU230393) V Sustainable Research Collaboration Grant UMPSA- International Islamic University Malaysia (IIUM) (RDU223223) under contract Tabung Persidangan Dalam Negara (TPDN) via Jabatan Penyelidikan dan Inovasi of UMPSA

Article Metrics:

  1. Arifin, M.N., Jusoh, R., Abdullah, H., Ainirazali, N., Setiabudi, H.D. (2023). Recent advances in advanced oxidation processes (AOPs) for the treatment of nitro- and alkyl-phenolic compounds. Environmental Research, 229, 115936. DOI: https://doi.org/10.1016/j.envres.2023.115936
  2. Gmurek, M., Olak-Kucharczyk, M., Ledakowicz, S. (2017). Photochemical decomposition of endocrine disrupting compounds – A review. Chemical Engineering Journal, 310, 437–456. DOI: https://doi.org/10.1016/j.cej.2016.05.014
  3. Young, B.J., López, G.C., Cristos, D.S., Crespo, D.C., Somoza, G.M., Carriquiriborde, P. (2017). Intersex and liver alterations induced by long-term sublethal exposure to 17α-ethinylestradiol in adult male Cnesterodon decemmaculatus (Pisces: Poeciliidae). Environmental Toxicology and Chemistry, 36(7), 1738–1745. DOI: https://doi.org/10.1002/etc.3547
  4. Foster, D., Brown, K. (2018). Dose Duration Effects of 17-α Ethynylestradiol in Zebrafish ToxicologyDOI: 10.5772/intechopen.74639
  5. Kumar, P., Boukherroub, R., Shankar, K. (2018). Sunlight-driven water-splitting using two-dimensional carbon based semiconductors. J Mater Chem A, 6(27), 12876–12931. DOI: 10.1039/C8TA02061B
  6. Rengifo-Herrera, J.A., Osorio-Vargas, P., Pulgarin, C. (2022). A critical review on N-modified TiO2 limits to treat chemical and biological contaminants in water. Evidence that enhanced visible light absorption does not lead to higher degradation rates under whole solar light. Journal of Hazardous Materials, 425, 127979. DOI: https://doi.org/10.1016/j.jhazmat.2021.127979
  7. Ijeh, R., Ikhioya, I. (2024). PHYSICSAccess Enhanced Photovoltaic Features of Tin-doped Cobalt Molybdate Nanostructure Materials. Physics Access, 04 DOI: 10.47514/phyaccess.2024.4.2.017
  8. Kuku, M., Althahban, S., Arishi, M. (2024). Diffusion-dominated redox performance of hydrated copper molybdate for high-performance energy storage. Inorg Chem Front, 11(23), 8258–8271. DOI: 10.1039/D4QI02229G
  9. Gurusamy, L., Karuppasamy, L., Anandan, S., Liu, C.-H., Wu, J.J. (2024). Recent advances on metal molybdate-based electrode materials for supercapacitor application. Journal of Energy Storage, 79, 110122. DOI: https://doi.org/10.1016/j.est.2023.110122
  10. Abd Aziz, A., Khatun, F., Monir, M., Ching, S., Leong, K. (2021). TiO2 : A Semiconductor Photocatalyst. pp. 1–16.DOI: 10.5772/intechopen.99256
  11. Dong, H., Chen, Y.-C., Feldmann, C. (2015). Polyol synthesis of nanoparticles: status and options regarding metals, oxides, chalcogenides, and non-metal elements. Green Chem, 17(8), 4107–4132. DOI: 10.1039/C5GC00943J
  12. Tan, W., Luan, J. (2020). Investigation into the synthesis conditions of CuMoO4 by an in situ method and its photocatalytic properties under visible light irradiation. RSC Adv, 10(16), 9745–9759. DOI: 10.1039/D0RA00496K
  13. Kamarasu, L., Sathiyamoorthi, E., Nannapaneni, S.S., Arunachalam, S., Arunpandian, M., Lee, J., Arumugam, P., Katari, N.K. (2023). Enhanced photocatalytic performance of pebble stone like CuMoO4 photocatalyst for the degradation of organic pollutant. Physica B: Condensed Matter, 650, 414544. DOI: https://doi.org/10.1016/j.physb.2022.414544
  14. Wu, Y., Wang, H. (2023). Construction of CuMoO4/MnO2/tourmaline composite for efficient organic wastewater decontamination via photo-Fenton-like processes. Journal of Environmental Chemical Engineering, 11(6), 111190. DOI: https://doi.org/10.1016/j.jece.2023.111190
  15. Gaur, N., Dutta, D., Singh, A., Dubey, R., Kamboj, D. (2022). Recent advances in the elimination of persistent organic pollutants by photocatalysis. Frontiers in Environmental Science, 10, 22076. DOI: 10.3389/fenvs.2022.872514
  16. Toe, C.Y., Zheng, Z., Wu, H., Scott, J., Amal, R., Ng, Y.H. (2018). Photocorrosion of Cuprous Oxide in Hydrogen Production: Rationalising Self-Oxidation or Self-Reduction. Angewandte Chemie International Edition, 57(41), 13613–13617. DOI: https://doi.org/10.1002/anie.201807647
  17. Tanjung, F., Syah, B.R., Altajer, A., Abdul-Rasheed, O., Aljeboree, A., Abd Alrazzak, N., Alkaim, A. (2021). CuMoO4/ ZnO Nanocomposites: Novel Synthesis, Characterization, and Photocatalytic Performance. Journal of Nanostructures. https://doi.org/10.22052/JNS.2021.01.009
  18. Syah, R., Hussein Altajer, A., F. Abdul- Rasheed, O., Amri Tanjung, F., M. Aljeboree, A., Abd Alrazzak, N., F. Alkaim, A. (2021). CuMoO4/ ZnO Nanocomposites: Novel Synthesis, Characterization, and Photocatalytic Performance. Journal of Nanostructures, 11(1), 73–80. DOI: 10.22052/JNS.2021.01.009
  19. Jin, Q., Han, L., Li, N., Zhang, T., Gao, E., Yao, M., Yao, S., Wu, Z., Li, J., Zhu, J., Wang, W. (2024). Exploring the influence of chemical state of Cu species on CO-SCR performance in spinel-type CuM2O4 (M = Co, Mn, Fe, Ni, and Cr): The synergy between Cu2+ and surface oxygen vacancy. Fuel, 360, 130553. DOI: https://doi.org/10.1016/j.fuel.2023.130553
  20. Baek, J., Sefat, A., Mandrus, D., Halasyamani, S. (2008). ChemInform Abstract: A New Magnetically Ordered Polymorph of CuMoO 4 : Synthesis and Characterization of ε-CuMoO 4. Cheminform, 39 DOI: 10.1002/chin.200839022
  21. Alabada, R., Ayub, A., Ajaj, Y., Bhat, S., Alshammari, R., Abduldayeva, A., Mallhi, A., Ahmad, Z., Mohamed, R. (2024). A new approach to the synthesis of CuMoO4 nanoparticles with mechanistic insight into the sunlight-assisted degradation of textile pollutants and antibacterial activity evaluation. Journal of Alloys and Compounds, 977, 1–14. DOI: 10.1016/j.jallcom.2023.173400
  22. Khan, I., Saeed, K., Zekker, I., Zhang, B., Hendi, A.H., Ahmad, A., Ahmad, S., Zada, N., Ahmad, H., Shah, L.A., Shah, T., Khan, I. (2022). Review on Methylene Blue: Its Properties, Uses, Toxicity and Photodegradation. Water, 14(2) DOI: 10.3390/w14020242
  23. Poteet, E., Winters, A., Yan, L.-J., Shufelt, K., Green, K., Simpkins, J., Wen, Y., Yang, S. (2012). Neuroprotective Actions of Methylene Blue and Its Derivatives. PloS one, 7, e48279. DOI: 10.1371/journal.pone.0048279
  24. Roy, N., Sohn, Y., Pradhan, D. (2013). Synergy of Low-Energy {101} and High-Energy {001} TiO2 Crystal Facets for Enhanced Photocatalysis. ACS Nano, 7(3), 2532–2540. DOI: 10.1021/nn305877v
  25. Li, J., Gong, Y., Li, J., Fan, L. (2023). Hydrothermal treatment improves xanthine oxidase inhibitory activity and affects the polyphenol profile of Flos Sophorae Immaturus. Journal of the Science of Food and Agriculture, 103(3), 1205–1215. DOI: https://doi.org/10.1002/jsfa.12215
  26. Sadeghi, M. (2016). Investigation of the structural, optical and magnetic properties of CuMoO4 nanoparticles synthesized through a sonochemical method. Journal of Materials Science: Materials in Electronics, 27 DOI: 10.1007/s10854-016-4494-5
  27. Dummer, N., Sodiq-Ajala, Z., Morgan, D., Davies, T. (2022). Investigating the preparation of Cu3Mo2O9 as a photocatalyst. Catalysis Communications, 163, 106414. DOI: 10.1016/j.catcom.2022.106414
  28. Liu, Z., Hadi, M.A., Aljuboory, D.S., Ali, F.A., Jawad, M.A., AL-Alwany, A., Hadrawi, S.K., Mundher, T., Riadi, Y., Amer, R.F., Fakhri, A. (2022). High efficiency of Ag0 decorated Cu2MoO4 nanoparticles for heterogeneous photocatalytic activation, bactericidal system, and detection of glucose from blood sample. Journal of Photochemistry and Photobiology B: Biology, 236, 112571. DOI: https://doi.org/10.1016/j.jphotobiol.2022.112571
  29. Yu, L., Li, N. (2019). Noble Metal Nanoparticles-Based Colorimetric Biosensor for Visual Quantification: A Mini Review. Chemosensors, 7(4) DOI: 10.3390/chemosensors7040053
  30. Liu, Y., Wang, W., Xu, X., Marcel Veder, J.-P., Shao, Z. (2019). Recent advances in anion-doped metal oxides for catalytic applications. J Mater Chem A, 7(13), 7280–7300. DOI: 10.1039/C8TA09913H
  31. Ghorai, T.K., Chakraborty, S., Satpute, N., Mehmood, S., Kumar, N., Sahu, S.K., Ghosh, M.K. (2023). A new copper molybdate-doped aluminium phosphate nanocomposite heterostructure for photoreduction of aqueous 2-NA and 4-NA. Mater Adv, 4(11), 2487–2493. DOI: 10.1039/D3MA00152K
  32. Wang, X., Huang, X., Zhao, M., Tanner, P.A., Zhou, X., Ning, L. (2022). Role of the Rigid Host Structure in Narrow-Band Green Emission of Eu2+ in Rb2Na2(Li3SiO4)4: Insights into Electron–Phonon Coupling. Inorganic Chemistry, 61(19), 7617–7623. DOI: 10.1021/acs.inorgchem.2c00868
  33. Živković, A., Roldan, A., Leeuw, N. (2019). Tuning the electronic band gap of Cu 2 O via transition metal doping for improved photovoltaic applications. Physical Review Materials, 3 DOI: 10.1103/PhysRevMaterials.3.115202
  34. Yao, C., Feng, H., Weng, S., Li, J., Huo, Y.-F., Yan, W., Dong, R., Yang, L. (2025). Cu2O1–x-Superlattices Induced Oxygen Vacancy for Localized Surface Plasmon Resonance. Nano Letters, 25(2), 922–930. DOI: 10.1021/acs.nanolett.4c06330
  35. Yang, Y., Shi, Z., Zang, H., Ma, X., Fan, D., Bai, J., Zhang, F., Jiang, K., Lv, S., Li, S., Sun, X., Li, D. (2024). How do the oxygen vacancies affect the photoexcited carriers dynamics in β-Ga2O3?. Materials Today Physics, 40, 101328. DOI: https://doi.org/10.1016/j.mtphys.2024.101328
  36. Prakash, A., Mahesha, M.G. (2023). Harnessing the tunability of intrinsic defects in isovalent Zn doped spray deposited CuO thin films. Materials Chemistry and Physics, 309, 128443. DOI: https://doi.org/10.1016/j.matchemphys.2023.128443
  37. ÇETİNKAYA, S. (2023). Solution‐Based Fabrication of Copper Oxide Thin Film Influence of Transition Metal (Cobalt) Doping on Structural, Morphological, Electrical, and Optical Properties. Turkish Journal of Engineering, 8 DOI: 10.31127/tuje.1290655
  38. Qiu, Q., Zhao, L., Li, S., Wang, D., Xu, L., Lin, Y., Xie, T. (2016). Suppress the Charge Recombination in Quantum Dot Sensitized Solar Cells by Construct the Al–treated TiO2/TiO2 NRAs Heterojunctions. ChemistrySelect, 1(18), 5936–5943. DOI: https://doi.org/10.1002/slct.201600953
  39. Tong, X., Wei, Q., Zhan, X., Zhang, G., Sun, S. (2017). The New Graphene Family Materials: Synthesis and Applications in Oxygen Reduction Reaction. Catalysts, 7(1) DOI: 10.3390/catal7010001
  40. Singh, G., Sai Bhargava, V., Sharma, M. (2018). Synthesis of graphene oxide–copper molybdate (GO-CuM) nanocomposites for photocatalytic application
  41. Khan, M.R., Abdullah, H., Safiei, W., Handani, Z.B., Nasaruddin, R.R., Arifin, M.N. (2025). Science mapping of TiO2 modification strategies for wastewater treatment: Current and future trends. Journal of Physics: Conference Series, 3003(1), 012038. DOI: 10.1088/1742-6596/3003/1/012038
  42. Phan, D.-T., Chung, G.-S. (2013). P–n junction characteristics of graphene oxide and reduced graphene oxide on n-type Si(111). Journal of Physics and Chemistry of Solids, 74(11), 1509–1514. DOI: https://doi.org/10.1016/j.jpcs.2013.02.007
  43. Zhang, X.-F., Xi, Q. (2011). A graphene sheet as an efficient electron acceptor and conductor for photoinduced charge separation. Carbon, 49, 3842–3850. DOI: 10.1016/j.carbon.2011.05.019
  44. C.R., M., M., L., Y.L., J., L., S., R.T., R.K. (2017). Adsorption behaviour of reduced graphene oxide towards cationic and anionic dyes: Co-action of electrostatic and π – π interactions. Materials Chemistry and Physics, 194, 243–252. DOI: https://doi.org/10.1016/j.matchemphys.2017.03.048
  45. Muhmood, T., Ahmad, I., Haider, Z., Haider, S.K., Shahzadi, N., Aftab, A., Ahmed, S., Ahmad, F. (2024). Graphene-like graphitic carbon nitride (g-C3N4) as a semiconductor photocatalyst: Properties, classification, and defects engineering approaches. Materials Today Sustainability, 25, 100633. DOI: https://doi.org/10.1016/j.mtsust.2023.100633
  46. Kasirajan, P., Karunamoorthy, S., Velluchamy, M., Subramaniam, K., Park, C.M., Sundaram, G.B. (2023). Fabrication of copper molybdate nanoflower combined polymeric graphitic carbon nitride heterojunction for water depollution: Synergistic photocatalytic performance and mechanism insight. Environmental Research, 233, 116428. DOI: https://doi.org/10.1016/j.envres.2023.116428
  47. Bhanderi, D., Lakhani, P., Modi, C.K. (2024). Graphitic carbon nitride (g-C3N4) as an emerging photocatalyst for sustainable environmental applications: a comprehensive review. RSC Sustainability, 2(2), 265–287. DOI: https://doi.org/10.1039/d3su00382e
  48. Sultana, N., Priyadarshini, P., Parida, K. (2025). UiO-66-NH2 and its functional nanohybrids: unlocking photocatalytic potential for clean energy and environmental remediation. Sustainable Energy Fuels, DOI: 10.1039/D5SE00150A
  49. Qiu, Z., Li, Y., Long, X., Tian, H., Pu, Y., Lv, B., Wei, J., Dai, Q., Wang, W. (2024). Built-in electric field induced efficient interfacial charge separation via the intimate interface of CdS-based all-sulfide binary heterojunction for enhanced photoelectrochemical performance. Journal of Alloys and Compounds, 976, 173188. DOI: https://doi.org/10.1016/j.jallcom.2023.173188
  50. Kusumah, A.D., Yulizar, Y., Apriandanu, D.O.B., Surya, R.M. (2024). Fabrication of ZnO and ZnO/CuMoO4 for the improvement of photocatalytic performance. Vacuum, 222, 113034. DOI: https://doi.org/10.1016/j.vacuum.2024.113034
  51. Jafarova, V.N., Orudzhev, G.S. (2021). Structural and electronic properties of ZnO: A first-principles density-functional theory study within LDA(GGA) and LDA(GGA)+U methods. Solid State Communications, 325, 114166. DOI: https://doi.org/10.1016/j.ssc.2020.114166
  52. Che, L., Pan, J., Cai, K., Cong, Y., Lv, S.-W. (2023). The construction of p-n heterojunction for enhancing photocatalytic performance in environmental application: A review. Separation and Purification Technology, 315, 123708. DOI: https://doi.org/10.1016/j.seppur.2023.123708
  53. Kumar, A., Raizada, P., Khan, A.A.P., Nguyen, V.-H., Van Le, Q., Singh, A., Saini, V., Selvasembian, R., Huynh, T.-T., Singh, P. (2021). Phenolic compounds degradation: Insight into the role and evidence of oxygen vacancy defects engineering on nanomaterials. Science of The Total Environment, 800, 149410. DOI: https://doi.org/10.1016/j.scitotenv.2021.149410
  54. Noby, S.Z., Fakharuddin, A., Schupp, S., Sultan, M., Krumova, M., Drescher, M., Azarkh, M., Boldt, K., Schmidt-Mende, L. (2022). Oxygen vacancies in oxidized and reduced vertically aligned α-MoO3 nanoblades. Mater Adv, 3(8), 3571–3581. DOI: 10.1039/D1MA00678A
  55. Banerjee, D., Banerjee, P., Kar, A.K. (2022). Insights into the impact of photophysical processes and defect state evolution on the emission properties of surface-modified ZnO nanoplates for application in photocatalysis and hybrid LEDs. Phys Chem Chem Phys, 24(4), 2424–2440. DOI: 10.1039/D1CP05110E
  56. Gupta, S.K., Modak, B., Das, D., Yadav, A.K., Modak, P., Debnath, A.K., Sudarshan, K. (2021). Light Harvesting from Oxygen Vacancies and A- and B-Site Dopants in CaSnO3 Perovskite through Efficient Photon Utilization and Local Site Engineering. ACS Applied Electronic Materials, 3(7), 3256–3270. DOI: 10.1021/acsaelm.1c00426
  57. Hao, L., Huang, H., Zhang, Y., Ma, T. (2021). Oxygen Vacant Semiconductor Photocatalysts. Advanced Functional Materials, 31(25), 2100919. DOI: https://doi.org/10.1002/adfm.202100919
  58. Gan, J., Lu, X., Wu, J., Xie, S., Zhai, T., Yu, M., Zhang, Z., Mao, Y., Wang, S.C.I., Shen, Y., Tong, Y. (2013). Oxygen vacancies promoting photoelectrochemical performance of In2O3 nanocubes. Scientific Reports, 3(1), 1021. DOI: 10.1038/srep01021
  59. Liu, Y., Peng, Y., Naschitzki, M., Gewinner, S., Schöllkopf, W., Kuhlenbeck, H., Pentcheva, R., Roldan Cuenya, B. (2021). Surface oxygen Vacancies on Reduced Co3O4(100): Superoxide Formation and Ultra-Low-Temperature CO Oxidation. Angewandte Chemie International Edition, 60(30), 16514–16520. DOI: https://doi.org/10.1002/anie.202103359
  60. Kusumah, A., Yulizar, Y., Bagus Apriandanu, D., Surya, R. (2024). Fabrication of ZnO and ZnO/CuMoO4 for the improvement of photocatalytic performance. Vacuum, 222, 113034. DOI: 10.1016/j.vacuum.2024.113034
  61. Ghorai, T.K., Dhak, D., Dalai, S., Pramanik, P. (2008). Effect of photocatalytic activities of nano-sized copper molybdate (CuMoO4)-doped bismuth titanate (Bi2Ti4O11) (CMBT) alloy. Materials Research Bulletin, 43(7), 1770–1780. DOI: https://doi.org/10.1016/j.materresbull.2007.07.009
  62. Wen, P., He, Q., Hu, D., Ren, L., Zhao, W., Wei, F. (2022). Preparation and Characterization of Cu3(MoO4)2(OH)2 Nanosheets with Solar Photocatalytic Activity. ChemistrySelect, 7(11), e202200087. DOI: https://doi.org/10.1002/slct.202200087
  63. Feng, Y., Shao, Y., Chen, X., Zhang, Y., Liu, Q., He, M., Li, H. (2021). Sea-Urchin-like Hollow CuMoO4–CoMoO4 Hybrid Microspheres, a Noble-Metal-like Robust Catalyst for the Fast Hydrogen Production from Ammonia Borane. ACS Applied Energy Materials, 4(1), 633–642. DOI: 10.1021/acsaem.0c02521
  64. Xia, J., Song, L.X., Liu, W., Teng, Y., Zhao, L., Wang, Q.S., Ruan, M.M. (2015). Construction of Cu3Mo2O9 nanoplates with excellent lithium storage properties based on a pH-dependent dimensional change. Dalton Trans, 44(30), 13450–13454. DOI: 10.1039/C5DT01645B
  65. Chakchouk, N., Karoui, K., Drissi, N., Jomni, F., Ben Rhaiem, A. (2024). An investigation of structural, thermal, and electrical conductivity properties for understanding transport mechanisms of CuWO4 and α-CuMoO4 compounds. RSC Adv, 14(1), 46–58. DOI: 10.1039/D3RA07453F
  66. Feng, S., Xu, R. (2001). New Materials in Hydrothermal Synthesis. Accounts of Chemical Research, 34(3), 239–247. DOI: 10.1021/ar0000105
  67. Li, J., Wu, Q., Wu, J. (2015). Synthesis of Nanoparticles via Solvothermal and Hydrothermal Methods. In: Aliofkhazraei, M. (ed) Handbook of Nanoparticles. Cham: Springer International Publishing, pp. 1–28.DOI: 10.1007/978-3-319-13188-7_17-1
  68. UPADHYAY, S., VARMA, V., Pundhir, D. (2024). A BRIEF STUDY OF SYNTHESIS OF METALLIC NANOPARTICLES VIA HYDROTHERMAL PROCESSDOI: 10.52458/9788197112492.nsp.2024.eb.ch-05
  69. Tan, W., Luan, J. (2020). Investigation into the synthesis conditions of CuMoO4 by an in situ method and its photocatalytic properties under visible light irradiation. RSC Adv, 10(16), 9745–9759. DOI: 10.1039/D0RA00496K
  70. Chakchouk, N., Karoui, K., Drissi, N., Jomni, F., Ben Rhaiem, A. (2024). An investigation of structural, thermal, and electrical conductivity properties for understanding transport mechanisms of CuWO4 and α-CuMoO4 compounds. RSC Advances, 14(1), 46–58. DOI: https://doi.org/10.1039/d3ra07453f
  71. Joe Pushba Shini, J., Joy Prabu, H., Felix Sahayaraj, A., Johnson, I., Thaninayagam, E., Gopi, R.R., Snowlin, V. (2024). Synthesis of hydroxyapatite (HAp) from eggshells via thermal decomposition method for the application of dye adsorption. Journal of the Indian Chemical Society, 101(10), 101321. DOI: https://doi.org/10.1016/j.jics.2024.101321
  72. Sadiq Mohamed, M.J., Gondal, M.A. (2024). Nanostructured defects-rich black-ZnO/biowaste-derived carbon composites for efficient visible light-driven hydrogen generation: A study on the role of C–Zn@C–O–Zn interface. International Journal of Hydrogen Energy, 92, 47–58. DOI: https://doi.org/10.1016/j.ijhydene.2024.10.152
  73. Moharana, S., Sahu, B.B., Nayak, R., Mahaling, R.N. (2022). 8 - Synthesis and properties of percolative metal oxide-polymer composites. In: Haider, S., Haider, A. (eds) Renewable Polymers and Polymer-Metal Oxide Composites. Elsevier, pp. 253–282.DOI: https://doi.org/10.1016/B978-0-323-85155-8.00001-7
  74. Kim, M.G., Kang, J.M., Lee, J.E., Kim, K.S., Kim, K.H., Cho, M., Lee, S.G. (2021). Effects of Calcination Temperature on the Phase Composition, Photocatalytic Degradation, and Virucidal Activities of TiO2 Nanoparticles. ACS Omega, 6(16), 10668–10678. DOI: 10.1021/acsomega.1c00043
  75. Abeysinghe, J.P., Gillan, E.G. (2023). Chapter 2 - Thermochemical reaction strategies for the rapid formation of inorganic solid-state materials. In: House, J.E. (ed) Dynamic Processes in Solids. Elsevier, pp. 51–95.DOI: https://doi.org/10.1016/B978-0-12-818876-7.00005-2
  76. Benchikhi, M., El Ouatib, R., Guillemet-Fritsch, S., Er-Rakho, L., Durand, B., Kassmi, K. (2015). Influence of chelating agent on the morphological properties of α-CuMoO 4 powder synthesized by sol–gel method
  77. Kessaratikoon, T., Saengsaen, S., Del Gobbo, S., D’Elia, V., Sooknoi, T. (2022). High Surface Area ZnO-Nanorods Catalyze the Clean Thermal Methane Oxidation to CO2. Catalysts, 12(12) DOI: 10.3390/catal12121533
  78. Tanaka, S. (2019). Solid State Reactions and Sintering. pp. 45–74.DOI: 10.1007/978-981-13-9935-0_3
  79. Krisha, S., Menaka, S., Celshia, S., Selvamani, M., Suresh, V. (2024). Synthesis of Copper Molybdate and Its Electrochemical Sensing of Paracetamol. Cureus, 16, e63925. DOI: 10.7759/cureus.63925
  80. Rondinini, S., Ardizzone, S., Cappelletti, G., Minguzzi, A., Vertova, A. (2009). MATERIALS | Sol–Gel Synthesis. In: Garche, J. (ed) Encyclopedia of Electrochemical Power Sources. Amsterdam: Elsevier, pp. 613–624.DOI: https://doi.org/10.1016/B978-044452745-5.00054-X
  81. Saikumari, N., Dev, S.M., Dev, S.A. (2021). Effect of calcination temperature on the properties and applications of bio extract mediated titania nano particles. Scientific Reports, 11(1), 1734. DOI: 10.1038/s41598-021-80997-z

Last update:

No citation recorded.

Last update:

No citation recorded.