skip to main content

Synthesis of Cu-PTC (Perylene 3,4,9,10-tetracarboxylate) Metal-Organic Framework (MOF) for Methylene Blue Photodegradation

1Department of Chemistry, Faculty of Science and Technology, UIN Syarif Hidayatullah Jakarta, Jl. Ir. H. Juanda No. 95 Ciputat Tangerang Selatan 15412, Indonesia

2Department of Chemistry Education, Faculty of Tarbiya and Teaching Sciences, UIN Syarif Hidayatullah, Jl. Ir. H. Juanda No. 95 Ciputat Tangerang Selatan 15412, Indonesia

3Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Indonesia, Jl. Lingkar Kampus Raya, Pondok Cina, Beji, Depok, Jawa Barat 16424, Indonesia

Received: 31 Oct 2025; Revised: 20 Jan 2026; Accepted: 21 Jan 2026; Available online: 30 Jan 2026; Published: 30 Aug 2026.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2026 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Disposal of synthetic dye waste, including methylene blue, has been increasing in recent years. The photocatalytic method is an effective approach for degrading dyes, using Metal–Organic Frameworks (MOFs) as catalysts and light as the energy source. This study aims to synthesize Cu-PTC MOF as a photocatalyst and evaluate its performance in degrading methylene blue dye. Cu-PTC was synthesized using Cu(NO3)2.3H2O and perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) via a solvothermal method. The resulting MOF was characterized using X-ray Diffraction (XRD), Ultraviolet–Visible Diffuse Reflectance Spectroscopy (UV-Vis DRS), Fourier Transform Infrared Spectroscopy (FTIR), and Scanning Electron Microscopy (SEM). Cu-PTC exhibits a bandgap energy of 1.72 eV and characteristic functional groups at wavenumbers 1689 cm-1 (C=O), 1590 cm-1 and 1360 cm-1 (-COO), 3450 cm-1 (O-H), and 738 cm-1 and 654 cm-1 (Cu-O). The Cu-PTC MOF has a crystallinity degree of 85.35%, a crystal size of 35.33 nm, and a rod-like surface morphology. Under visible light irradiation, it achieves an optimum degradation efficiency of 71.45%, with an adsorption capacity of 73.28 mg/g for methylene blue dye at a concentration of 50 ppm, using 25 mg of Cu-PTC MOF at pH 7 over a period of 60 minutes.

Supporting Information (SI) PDF
Keywords: Cu-PTC; methylene blue; photocatalyst; solvothermal

Article Metrics:

  1. Rather, L.J., Akhter, S., Hassan, Q.P. (2018). Bioremediation: Green and Sustainable Technology for Textile Effluent Treatment. In: Muthu, S. (eds) Sustainable Innovations in Textile Chemistry and Dyes. Singapore: Springer
  2. Hassani, A., Eghbali, P., Metin, Ö. (2018). Sonocatalytic Removal of Methylene Blue from Water Solution by Cobalt Nanocomposites : Response Surface Methodology Approach. Environmental Science and Pollution Research, 25(32), 32140-32155
  3. Oladoye, P.O., Ajiboye, T.O., Omotola, E.O., Oyewola, O.J. (2022). Methylene Blue Dye: Toxicity and Potential Elimination Technology from Wastewater. Results in Engineering, 16(August), 100678. DOI: 10.1016/j.rineng.2022.100678
  4. Paździor, K., Bilińska, L., Ledakowicz, S. (2018). A Review of the Existing and Emerging Technologies in the Combination of AOPs and Biological Processes in Industrial Textile Wastewater Treatment. Chem Eng J. https://doi.org/10.1016/j.cej.2018.12.057
  5. Martinez-Huitle, C.A., Rodrigo, M.A., Sires, I., Scialdone, O. (2015). Single and Coupled Electrochemical Processes and Reactors for the Abatement of Organic Water Pollutants : A Critical Review. Chemical reviews, 115(24), 13362-13407. https://doi.org/10.1021/acs.chemrev.5b00361
  6. Hassani, A., Pourshirband, N., Sayyar, Z., Eghbali, P. (2025). Fenton and Fenton-like-based Advanced Oxidation Processes. In Innovative and Hybrid Advanced Oxidation Processes for Water Treatment (pp. 171-203). Elsevier
  7. Brillas, E., Martínez-Huitle, C.A. (2014). Decontamination of Wastewaters Containing Synthetic Organic Dyes by Electrochemical Methods. An updated review. Applied catalysis b: environmental, 166, 603-643. https://doi.org/10.1016/j.apcatb.2014.11.016
  8. Ghorbani, P., Hassani, A., Eghbali, P., & Abbasi, A. (2025). Activated Carbon-Based Photocatalysts for the Removal of Pesticides. Pesticide Removal Methods from Wastewater: Proactive Approaches and Future Trends, 203
  9. Annisaputri, W., Azzah, A., Wibisono, R. (2020). Studi Potensi Fotokatalis dari Material Kerangka Logam-Organik (Metal-Organic Framework) untuk Degradasi Zat Pewarna Limbah Batik. The Indonesian Green Technology Journal, 42–53. DOI: 10.21776/ub.igtj.2020.009.02.03
  10. Natarajan, S., Bajaj, H.C., Tayade, R.J. (2018). Recent Advances Based on the Synergetic Effect of Adsorption for Removal of Dyes from Waste Water using Photocatalytic Process. Journal of Environmental Sciences (China), 65, 201–222. DOI: 10.1016/j.jes.2017.03.011
  11. Wang, C.C., Li, J.R., Lv, X.L., Zhang, Y.Q., Guo, G. (2014). Photocatalytic Organic Pollutants Degradation in Metal-Organic Frameworks. Energy and Environmental Science, 7(9), 2831–2867. DOI: 10.1039/c4ee01299b
  12. Zhang, Y.-B., Furukawa, H., Ko, N., Nie, W., Park, H.J., Okajima, S., Cordova, K.E., Deng, H., Kim, J., Yaghi, O.M. (2015). Introduction of Functionality, Selection of Topology, and Enhancement of Gas Adsorption in Multivariate Metal–Organic Framework-177. Journal of the American Chemical Society, 137(7), 2641–2650. DOI: 10.1021/ja512311a
  13. Li, M., Li, D., O’Keeffe, M., Yaghi, O.M. (2014). Topological Analysis of Metal–Organic Frameworks with Polytopic Linkers and/or Multiple Building Units and the Minimal Transitivity Principle. Chemical Reviews, 114(2), 1343–1370. DOI: 10.1021/cr400392k
  14. Syaima, H., Kumalasari, M.R., Hanif, Q.A., Hiyahara, I.A., Salsabila, A.P., Zahra, M.A. (2024). Photocatalytic Potential of Metal-Organic Frameworks for Pollutant Degradation: A Literature Review. Evergreen, 11(3), 1715–1731. DOI: 10.5109/7236824
  15. Abdelhamid, H.N. (2017). Lanthanide Metal-Organic Frameworks and Hierarchical Porous Zeolitic Imidazolate Frameworks: Synthesis, Properties, and Applications. Ph.D. Dissertation, Department of Materials and Environmental Chemistry, Stockholm University
  16. Mahreni, Ristianingsih, Y., Suhascaryo, N. (2020). Sintesis dan Aplikasi Material Baru Kerangka Logam Organik (Metal Organic Framework, MOF). Yogyakarta: Universitas Pembangunan Nasional "Veteran"
  17. Saridewi, N., Azhar, F.M., Abdillah, P.A., Zulys, A., Nurbayti, S., Tulhusna, L., Adawiah, A. (2022). Synthesize Metal-Organic Frameworks From Chromium Metal Ions and PTCDA Ligands for Methylene Blue Photodegradation. Rasayan Journal of Chemistry, 15(4), 2544–2550. DOI: 10.31788/RJC.2022.1547046
  18. Yuan, S., Feng, L., Wang, K., Pang, J., Bosch, M., Lollar, C., Sun, Y., Qin, J., Yang, X., Zhang, P., Wang, Q., Zou, L., Zhang, Y., Zhang, L., Fang, Y., Li, J., Zhou, H.C. (2018). Stable Metal–Organic Frameworks: Design, Synthesis, and Applications. Advanced Materials, 30(37) DOI: 10.1002/adma.201704303
  19. Zhang, M., Wang, L., Zeng, T., Shang, Q., Zhou, H., Pan, Z., Cheng, Q. (2018). Two Pure MOF-photocatalysts Readily Prepared for the Degradation of Methylene Mlue Dye Under Visible Light. Dalton Transactions, 47(12), 4251–4258. DOI: 10.1039/C8DT00156A
  20. Haso, H.W., Dubale, A.A., Chimdesa, M.A., Atlabachew, M. (2022). High Performance Copper Based Metal Organic Framework for Removal of Heavy Metals From Wastewater. Frontiers in Materials, 9(March), 1–11. DOI: 10.3389/fmats.2022.840806
  21. Ningsih, S.K.W. (2016). Sintesis Anorganik. Padang: UNP Press Padang
  22. Shen, Z., He, S., Yao, P., Lao, X., Yang, B., Dai, Y., Sun, X., Chen, T. (2014). Lanthanum-based Coordination Polymers Microplates using a “Green Ligand” EDTA with Tailorable Morphology and Fluorescent Property. RSC Advances, 4(25), 12844–12848. DOI: 10.1039/c3ra46829a
  23. Salama, R.S., Abd El-Hakam, S., Elsayed Samra, S., El-dafrawy, S.M., El-Hakam, S.A., Samra, S.E., El-Dafrawy, S.M., Ahmed, A.I. (2018). Adsorption, Equilibrium and kinetic studies on the removal of methyl orange dye from aqueous solution by the use of copper metal organic framework (Cu-BDC). International Journal of Modern Chemistry, 10(2), 195–207
  24. Varughese, A., Kaur, R., Singh, P. (2020). Green Synthesis and Characterization of Copper Oxide Nanoparticles Using Psidium guajava Leaf Extract. IOP Conference Series: Materials Science and Engineering, 961(1), 012011. DOI: 10.1088/1757-899X/961/1/012011
  25. Shadmehr, J., Zeinali, S., Tohidi, M. (2019). Synthesis of a Chromium Terephthalate Metal Organic Framework and use as Nanoporous Adsorbent for Removal of Diazinon Organophosphorus Insecticide from Aqueous Media. Journal of Dispersion Science and Technology, 40(10), 1423–1440. DOI: 10.1080/01932691.2018.1516149
  26. Christina, L.C., Gunlazuardi, J., Zulys, A. (2020). Synthesis and Characterization of Lanthanide Metal-Organic Framework with Perylene 3,4,9,10-tetracarboxylate Ligand. IOP Conference Series: Materials Science and Engineering, 902(1) DOI: 10.1088/1757-899X/902/1/012046
  27. Fathurrahman, M., Zulys, A., Gunlazuardi, J. (2024). Fotodegradasi Metilen Biru oleh Metal Organic Framework (MOF) Fe-PTC dengan Penambahan H2O2 dan Dioptimasi Menggunakan Desain Box Behnken. Jurnal Kartika Kimia, 6(11), 131–144
  28. Ban, Y., Li, Y., Liu, X., Peng, Y., Yang, W. (2013). Solvothermal Synthesis of Mixed-ligand Metal-Organic Framework ZIF-78 with Controllable Size and Morphology. Microporous and Mesoporous Materials, 173, 29–36. DOI: 10.1016/j.micromeso.2013.01.031
  29. Kudo, A., Miseki, Y. (2009). Heterogeneous Photocatalyst Materials for Water Splitting. Chemical Society Reviews, 38(1), 253–278. DOI: 10.1039/b800489g
  30. Rosanti, A.D., Wardani, A.R.., Latifah, E.U. (2020). Pengaruh Variasi Konsentrasi Urea Terhadap Fotoaktivitas Material Fotokatalis N/TiO2 Untuk Penjernihan Limbah Batik Tenun Ikat Kediri. Jurnal Kimia Riset, 5(1), 55. DOI: 10.20473/jkr.v5i1.18169
  31. Lin, C.K., Zhao, D., Gao, W.Y., Yang, Z., Ye, J., Xu, T., Ge, Q., Ma, S., Liu, D.J. (2012). Tunability of Band Gaps in Metal-Organic Frameworks. Inorganic Chemistry, 51(16), 9039–9044. DOI: 10.1021/ic301189m
  32. Samuel, M.S., Savunthari, K.V., Ethiraj, S. (2021). Synthesis of a Copper (II) Metal–Organic Framework for Photocatalytic Degradation of Rhodamine B Dye in Water. Environmental Science and Pollution Research, 28(30), 40835–40843. DOI: 10.1007/s11356-021-13571-9
  33. Li, Y., Fu, Y., Zhu, M. (2020). Green Synthesis of 3D Tripyramid TiO2 Architectures with Assistance of Aloe Extracts for Highly Efficient Photocatalytic Degradation of Antibiotic Ciprofloxacin. Applied Catalysis B: Environmental, 260, 118149. DOI: 10.1016/j.apcatb.2019.118149
  34. Romeiro, A., Freitas, D., Emília Azenha, M., Canle, M., Burrows, H.D. (2017). Effect of the Calcination Temperature on the Photocatalytic Efficiency of Acidic Sol–gel Synthesized TiO2 Nanoparticles in the Degradation of Alprazolam. Photochemical & Photobiological Sciences, 16(6), 935–945. DOI: 10.1039/c6pp00447d
  35. Liu, Y., Liu, Z., Huang, D., Cheng, M., Zeng, G., Lai, C., Zhang, C., Zhou, C., Wang, W., Jiang, D., Wang, H., Shao, B. (2019). Metal or Metal-containing Nanoparticle@MOF Nanocomposites as a Promising Type of Photocatalyst. Coordination Chemistry Reviews, 388, 63–78. DOI: 10.1016/j.ccr.2019.02.031
  36. Wang, X.Q., Han, S.F., Zhang, Q.W., Zhang, N., Zhao, D.D. (2018). Photocatalytic Oxidation Degradation Mechanism Study of Methylene Blue Dye Waste Water with GR/iTO2. MATEC Web of Conferences, 238 DOI: 10.1051/matecconf/201823803006
  37. Chen, X., Mao, S.S. (2007). Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications and Applications. Chemical Reviews, 107(7), 2891–2959. DOI: 10.1021/cr0500535
  38. Kumar, A. (2017). A Review on the Factors Affecting the Photocatalytic Degradation of Hazardous Materials. Material Science & Engineering International Journal, 1(3) DOI: 10.15406/mseij.2017.01.00018
  39. Aziz, D.M., Hassan, S.A., Aziz, S.B., Kader, D.A. (2025). Efficient Adsorption and Photocatalytic Degradation of Methylene Blue using HKUST-1: A Novel Approach for Dye Removal and Wastewater Treatment under Sunlight. Next Materials, 9(April), 101015. DOI: 10.1016/j.nxmate.2025.101015
  40. Lubis, S., Sheilatina, Wardani Sitompul, D. (2019). Photocatalytic Degradation of Indigo Carmine Dye using α-Fe2O3 /Bentonite Nanocomposite Prepared by Mechanochemical Synthesis. IOP Conference Series: Materials Science and Engineering, 509(1), 012142. DOI: 10.1088/1757-899X/509/1/012142
  41. Khan, S., Noor, T., Iqbal, N., Yaqoob, L. (2024). Photocatalytic Dye Degradation from Textile Wastewater: A Review. ACS Omega, 9(20), 21751–21767. DOI: 10.1021/acsomega.4c00887
  42. Suprihatin, I.E., Suat, R.M., Negara, I.M.S. (2022). Fotodegradasi Zat Warna Methylene Blue Dengan Sinar UV Dan Fotokatalis Nanopartikel Perak. Jurnal Kimia, 16(2), 168. DOI: 10.24843/jchem.2022.v16.i02.p06

Last update:

No citation recorded.

Last update:

No citation recorded.