skip to main content

One Pot Synthesis of N-acetylglycine from N-acetyl Glucosamine over Bifunctional Ag/MgO

1School of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China

2Chongqing Sanxia Paints Company Limited, Chongqing 402284, China

Received: 6 Sep 2025; Revised: 26 Oct 2025; Accepted: 27 Oct 2025; Available online: 2 Nov 2025; Published: 30 Apr 2026.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

The catalytic conversion of chitin biomass provides an environment-friendly approach for the synthesis of valuable organonitrogen compounds. Here, we prepared bifunctional Ag/MgO by simple deposition-precipitation method. The catalysts exhibited good catalytic activity for one pot synthesis of N-acetylglycine (AcGly) from N-acetyl glucosamine (NAG), offering a 26.2% yield under optimized conditions. The basic nature of MgO contributed to the retro-aldol of NAG, and Ag species catalyzed the oxidation of intermediate to AcGly. The spent catalyst could be recycled and reused for NAG conversion to AcGly. Copyright © 2026 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Chitin; N-acetylglycine; Bifunctional; Retro-aldol; Oxidation
Funding: National Natural Science Foundation of China under contract 22408032;Chongqing Municipal Education Commission under contract KJQN202200844;Chongqing Municipal Education Commission under contract S202411

Article Metrics:

  1. Deng, W., Feng, Y., Fu, J., Guo, H., Guo, Y., Han, B., Jiang, Z., Kong, L., Li, C., Liu, H. (2023). Catalytic conversion of lignocellulosic biomass into chemicals and fuels. Green Energy & Environment, 8 (1), 10-114. DOI: 10.1016/j.gee.2022.07.003
  2. Du, Z., Yang, D., Cao, Q., Dai, J., Yang, R., Gu, X., Li, F. (2023). Recent advances in catalytic synthesis of 2,5-furandimethanol from 5-hydroxymethylfurfural and carbohydrates. Bioresources and Bioprocessing, 10 (1), 52. DOI: 10.1186/s40643-023-00676-x
  3. Chen, X., Song, S., Li, H., Gözaydın, G.K., Yan, N. (2021). Expanding the boundary of biorefinery: organonitrogen chemicals from biomass. Accounts of Chemical Research, 54 (7), 1711-1722. DOI: 10.1021/acs.accounts.0c00842
  4. Dai, J., Li, F., Fu, X. (2020). Towards shell biorefinery: advances in chemical‐catalytic conversion of chitin biomass to organonitrogen chemicals. ChemSusChem, 13 (24), 6498-6508. DOI: 10.1002/cssc.202001955
  5. Hulsey, M.J., Yang, H.Y., Yan, N. (2018). Sustainable routes for the synthesis of renewable heteroatom-containing chemicals. ACS Sustainable Chemistry & Engineering, 6 (5), 5694-5707. DOI: 10.1021/acssuschemeng.8b00612
  6. Qaseem, M.F., Shaheen, H., Wu, A.-M. (2021). Cell wall hemicellulose for sustainable industrial utilization. Renewable and Sustainable Energy Reviews, 144, 110996. DOI: 10.1016/j.rser.2021.110996
  7. Shi, X., Ye, X., Zhong, H., Wang, T., Jin, F. (2021). Sustainable nitrogen-containing chemicals and materials from natural marine resources chitin and microalgae. Molecular Catalysis, 505, 111517. DOI: 10.1016/j.mcat.2021.111517
  8. Li, X., Xu, Y., Alorku, K., Wang, J., Ma, L. (2023). A review of lignin-first reductive catalytic fractionation of lignocellulose. Molecular Catalysis, 550, 113551. DOI: 10.1016/j.mcat.2023.113551
  9. Yan, N., Chen, X. (2015). Don't waste seafood waste. Nature, 524 (7564), 155-157. DOI: 10.1038/524155a
  10. Chen, X., Yang, H., Yan, N. (2016). Shell Biorefinery: Dream or Reality? Chemistry-a European Journal, 22 (38), 13402. DOI: 10.1002/chem.201602389
  11. Xu, B., Dai, J., Du, Z., Li, F., Liu, H., Gu, X., Wang, X., Li, N., Zhao, J. (2023). Catalytic conversion of biomass-derived compounds to various amino acids: Status and perspectives. Frontiers of Chemical Science and Engineering, 17 (7), 817-829. DOI: 10.1007/s11705-022-2254-z
  12. Kobayashi, H., Sagawa, T., Fukuoka, A. (2023). Catalytic conversion of chitin as a nitrogen-containing biomass. Chemical Communications, 59 (42), 6301-6313. DOI: 10.1039/D3CC00902E
  13. Rogers, R.D., Kerton, F.M. (2022). Marine-based green chemistry. Green Chemistry, 24 (6), 2265-2266. DOI: 10.1039/D2GC90018A
  14. Xing, A., Secundo, F., Xue, C., Hu, Y., Mao, X. (2024). Green and Efficient Preparation of Nano-chitin for Enzymatic Preparation of N-Acetylchitooligosaccharides. ACS Sustainable Resource Management, 1 (1), 88-96. DOI: 10.1021/acssusresmgt.3c00044
  15. Gözaydın, G.K., Sun, Q., Oh, M., Lee, S., Choi, M., Liu, Y., Yan, N. (2023). Chitin hydrolysis using zeolites in lithium bromide molten salt hydrate. ACS Sustainable Chemistry & Engineering, 11 (6), 2511-2519. DOI: 10.1021/acssuschemeng.2c06675
  16. Cao, S., Liu, Y., Shi, L., Zhu, W., Wang, H. (2022). N-Acetylglucosamine as a platform chemical produced from renewable resources: opportunity, challenge, and future prospects. Green Chemistry, 24 (2), 493-509. DOI: 10.1039/D1GC03725K
  17. Ji, X., Kou, J., Gozaydin, G., Chen, X. (2024). Boosting 3-acetamido-5-acetylfuran production from N-acetyl-D-glucosamine in γ-valerolactone by a dissolution-dehydration effect. Applied Catalysis B: Environmental, 342, 123379. DOI: 10.1016/j.apcatb.2023.123379
  18. Wu, C., Zhu, X., Zang, H., Liu, Z., Zhu, X., Chang, Y. (2024). Efficient conversion of N-acetyl-D-glucosamine into organonitrogen compound 3-acetamido-5-acetylfuran via a novel tandem coordination-catalysis process catalyzed by WCl6-based Brønsted-Lewis acidic ionic liquid. Molecular Catalysis, 566, 114404. DOI: 10.1016/j.mcat.2024.114404
  19. Yamazaki, K., Hiyoshi, N., Yamaguchi, A. (2023). Conversion of N‐Acetylglucosamine to 3‐Acetamido‐5‐Acetylfuran over Al‐Exchanged Montmorillonite. ChemistryOpen, 12 (12), e202300148. DOI: 10.1002/open.202300148
  20. Chen, K., Wu, C., Wang, C., Zhang, A., Cao, F., Ouyang, P. (2021). Chemo-enzymatic protocol converts chitin into a nitrogen-containing furan derivative, 3-acetamido-5-acetylfuran. Molecular Catalysis, 516, 112001. DOI: 10.1016/j.mcat.2021.112001
  21. Dai, J., Cao, Q., Yang, D., Chen, G., Du, Z., Wang, S., Li, F. (2025). 3-Acetamido-5-acetylfuran: An emerging renewable nitrogen-containing platform compound. Chinese Journal of Chemical Engineering, 78, 263-272. DOI: 10.1016/j.cjche.2024.10.029
  22. Liu, Y., Stähler, C., Murphy, J.N., Furlong, B.J., Kerton, F.M. (2017). Formation of a Renewable Amine and an Alcohol via Transformations of 3-Acetamido-5-acetylfuran. ACS Sustainable Chemistry & Engineering, 5 (6), 4916. DOI: 10.1021/acssuschemeng.7b00323
  23. Pham, T.T., Gözaydın, G., Söhnel, T., Yan, N., Sperry, J. (2019). Oxidative Ring‐Expansion of a Chitin‐Derived Platform Enables Access to Unexplored 2‐Amino Sugar Chemical Space. European Journal of Organic Chemistry, 2019 (6), 1355-1360. DOI: 10.1002/ejoc.201801683
  24. Pereira, J.G., Ravasco, J.M., Vale, J.R., Queda, F., Gomes, R.F. (2022). A direct Diels–Alder reaction of chitin derived 3-acetamido-5-acetylfuran. Green Chemistry, 24 (18), 7131-7136. DOI: 10.1039/D2GC00253A
  25. Sadiq, A.D., Chen, X., Yan, N., Sperry, J. (2018). Towards the shell biorefinery: sustainable synthesis of the anticancer alkaloid proximicin A from chitin. ChemSusChem, 11 (3), 532-535. DOI: 10.1002/cssc.201702356
  26. Dai, J.H., Gozaydin, G., Hu, C.W., Yan, N. (2019). Catalytic conversion of chitosan to glucosaminic acid by tandem hydrolysis and oxidation. ACS Sustainable Chemistry & Engineering, 7 (14), 12399-12407. DOI: 10.1021/acssuschemeng.9b01912
  27. Dai, J., Cao, Q., Du, Z., Yang, R., Yang, D., Li, F., Gu, X. (2023). Facile synthesis of N-acetylglycine from chitin-derived N-acetylmonoethanolamine. Catalysis Communications, 185, 106812. DOI: 10.1016/j.catcom.2023.106812
  28. Ohmi, Y., Nishimura, S., Ebitani, K. (2013). Synthesis of alpha-amino acids from glucosamine-HCl and its derivatives by aerobic oxidation in water catalyzed by Au nanoparticles on basic supports. ChemSusChem, 6 (12), 2259-2262. DOI: 10.1002/cssc.201300303
  29. Techikawara, K., Kobayashi, H., Fukuoka, A. (2018). Conversion of N-acetylglucosamine to protected amino acid over Ru/C catalyst. ACS Sustainable Chemistry & Engineering, 6 (9), 12411-12418. DOI: 10.1021/acssuschemeng.8b02951
  30. Kobayashi, H., Techikawara, K., Fukuoka, A. (2017). Hydrolytic hydrogenation of chitin to amino sugar alcohol. Green Chemistry, 19 (14), 3350-3356. DOI: 10.1039/c7gc01063j
  31. Lin, C., Xu, L., Zhuang, Y., Ma, P., Wu, H., Gan, H., Cao, F., Wei, P. (2024). Oxy-vacancy Mo-acetylacetone catalyzes N-acetylglucosamine to co-produce furan and pyrrole compounds. Chemical Engineering Science, 121099. DOI: 10.1016/j.ces.2024.121099
  32. Harburn, J.J., Rath, N.P., Spilling, C.D. (2005). Efficient synthesis of tyrosine-derived marine sponge metabolites via acylation of amines with a coumarin. The Journal of Organic Chemistry, 70 (16), 6398-6403. DOI: 10.1021/jo050846r
  33. Jiang, F., Chen, K.-X., Xiang, J.-M., Shen, Y.-C. (2024). An Enzymatic Method to Obtain Enantiopure 3-Pyridyl and Substituted Phenyl Alanine. Chirality, 36 (11), e70000. DOI: 10.1002/chir.70000
  34. Li, R., Dong, G. (2020). Structurally modified norbornenes: a key factor to modulate reaction selectivity in the palladium/norbornene cooperative catalysis. Journal of the American Chemical Society, 142 (42), 17859-17875. DOI: 10.1021/jacs.0c09193
  35. Meng, G., Lam, N.Y., Lucas, E.L., Saint-Denis, T.G., Verma, P., Chekshin, N., Yu, J.-Q. (2020). Achieving site-selectivity for C–H activation processes based on distance and geometry: a carpenter’s approach. Journal of the American Chemical Society, 142 (24), 10571-10591. DOI: 10.1021/jacs.0c04074
  36. Venkatesan, G. (2021). Third-order nonlinear and linear optical properties of n-acetyl glycine hydrochloride crystal for optical applications. Journal of Optics, 50 (2), 169-176. DOI: 10.1007/s12596-021-00696-w
  37. Cao, Q., Dai, J., Du, Z., Chen, G., Li, F., Qi, T., Wang, R., Wang, W., Zhao, J., Huang, C. (2025). One-pot green synthesis of N-acetylglycine from renewable N-acetyl glucosamine. Organic & Biomolecular Chemistry, 23 (21), 5126-5132. DOI: 10.1039/D5OB00577A
  38. Song, Y., Xu, M., Li, Z., He, L., Hu, M., He, L., Zhang, Z., Du, M. (2020). Ultrasensitive detection of bisphenol A under diverse environments with an electrochemical aptasensor based on multicomponent AgMo heteronanostructure. Sensors and Actuators B: Chemical, 321, 128527. DOI: 10.1016/j.snb.2020.128527

Last update:

No citation recorded.

Last update:

No citation recorded.