skip to main content

Ceria-Promoted Titanium Dioxide (CeO2/TiO2) Nanocomposites for Efficient Phenol Removal under Advanced Oxidation Processes (AOPs)

1Laboratory of Catalysis and Synthesis in Organic Chemistry (LCSCO) Abou Bekr Belkaid University of ‎Tlemcen, BP 119, 13000 Tlemcen, Algeria

2Laboratory of Materials Chemistry (LCM), University Oran1 “Ahmed Ben Bella”, BP 1524, El-Menaouer, 31000 Oran, Algeria

Received: 21 Nov 2025; Revised: 9 Jan 2026; Accepted: 11 Jan 2026; Available online: 17 Jan 2026; Published: 30 Apr 2026.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2026 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

In this study, a series of x %CeO2/TiO2 (x= 1, 2, 3, 5 and 10) catalysts were successfully synthesized with Ce(NO3)3.6H2O as precursor via a simple wetness impregnation method. The resulting samples were characterized by XRD, FTIR, surface area and pore volume measurements, Raman spectroscopy, SEM, and UV-Vis -DRS. These catalysts were used for the degradation of the phenol through three types of advanced oxidation processes (AOPs), namely the heterogeneous Fenton process (photocatalyst/H2O2), the photocatalysis process (photocatalyst/UV), and the photo-Fenton process (photocatalyst/UV/H2O2). The 10 ‎%‎ CeO2/TiO2 catalyst showed superior degradation efficiency of 99.05 ‎%‎, when used in the heterogeneous photo-Fenton process. To determine the optimal conditions for phenol degradation, using the heterogeneous photo-Fenton process, the effects of parameters such as photocatalyst dosage, initial pH, phenol concentration, H2O2 volume, and temperature were investigated. The optimal conditions were as follows: 0.1 g of catalyst, 0.6 mM of hydrogen peroxide, a reaction temperature of 25 °C, an initial pH of 8, an initial phenol concentration of 30 ppm, and a reaction time of 240 minutes. The impact of radical scavengers (such as p-benzonquinone, silver nitrate, EDTA-2Na and propan-2-ol) on degradation efficiency was also studied. For all three oxidation processes, phenol photodegradation could be described by the pseudo-first-order kinetics according to the Langmuir-Hinshelwood model. Furthermore, the catalysts could be easily recovered from the reaction solution by centrifugation and reused for five cycles without significant loss of activity. Copyright © 2026 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Cerium doped titanium dioxide; Phenol; Advanced oxidation processes; Hydrogen peroxide; UV irradiation. ‎
Funding: Algerian Ministry of Higher Education and Scientific Research

Article Metrics:

  1. Prabha, I., Lathasree, S. (2014). Photodegradation of phenol by zinc oxide, titania and zinc oxide–titania composites: Nanoparticle synthesis, characterization and comparative photocatalytic efficiencies. Materials Science in Semiconductor Processing, 26, 603-613. DOI: 10.1016/j.mssp.2014.05.031
  2. Zulfiqar, M., Sufian, S., Rabat, N.E., Mansor, N. (2020). Photocatalytic degradation and adsorption of phenol by solvent-controlled TiO2 nanosheets assisted with H2O2 and FeCl3: Kinetic, isotherm and thermodynamic analysis. Journal of Molecular Liquids. 308, 112941. DOI: 10.1016/j.molliq.2020.112941
  3. Zamri, M.S.F.A., Sapawe, N., (2018). Performance studies of electrobiosynthesis of titanium dioxide nanoparticles (TiO2) for phenol degradation. Materials Today: Proceedings. 5, 21797-21801. DOI: 10.1016/j.matpr.2018.07.034
  4. Huang, L., Li, D., Liu, J., Yang, L., Dai, C., Ren, N., Feng, Y., (2020). Construction of TiO2 nanotube clusters on Ti mesh for immobilizing Sb-SnO2 to boost electrocatalytic phenol degradation. Journal of Hazardous Materials. 393, 122329. DOI: 10.1016/j.jhazmat.2020.122329
  5. Aghda, S.M.F., Samadi, A., Asadollahfardi, G., Dastafkan, F., (2023). Sustainable rural development based on groundwater quality using fuzzy logic and gis. a case study: Maku, Iran. Environmental Engineering Management Journal. 22. DOI: 10.30638/eemj.2023.005
  6. Vaiano, V., Matarangolo, M., Murcia, J., Rojas, H., Navio, J.A., Hidalgo, M., (2018). Enhanced photocatalytic removal of phenol from aqueous solutions using ZnO modified with Ag. Applied Catalysis B: Environmental. 225, 197-206. DOI: 10.1016/j.apcatb.2017.11.075
  7. Mohd, A., (2022). Presence of phenol in wastewater effluent and its removal: an overview. International Journal of Environmental Analytical Chemistry. 102, 1362-1384. DOI: 10.1080/03067319.2020.1738412
  8. Broccoli, F., Paparo, R., Iesce, M.R., Di Serio, M., Russo, V. (2023). Heterogeneous Photodegradation Reaction of Phenol Promoted by TiO2: A Kinetic Study. ChemEngineering. 7, 27. DOI: 10.3390/chemengineering7020027
  9. Wardhani, S., Purwonugroho, D., Fitri, C.W., Prananto, Y.P. (2018). Effect of pH and irradiation time on TiO2-chitosan activity for phenol photo-degradation. In AIP Publishing LLC, pp. 050009. DOI: 10.1063/1.5062759
  10. Yuting, F., Changbo, L., Guozheng, Z., Hui, L., Shuo, W., Hongzhu, X., (2021). Progress in treatment technology of phenol-containing industrial wastewater. IOP Conference Series: Earth and Environmental Science. 787, 012054. DOI: 10.1088/1755-1315/787/1/012054
  11. Devendrapandi, G., Balu, R., Ayyappan, K., Ayyamperumal, R., Alhammadi, S., Lavanya, M., Senthilkumar, R., Karthika, P., (2024). Unearthing Earth's secrets: Exploring the environmental legacy of contaminants in soil, water, and sediments. Environmental Research. 249, 118246. DOI: 10.1016/j.envres.2024.118246
  12. Ma, J., Wang, Y., Zhang, Z., Wang, X., Hou, X., Hu, Q. (2024). Conventional and toxic pollutants removal of toxic herbal wastewater by using moving bed biofilm reactor, coagulation, and adsorption. Journal of Environmental Chemical Engineering. 12, 112705. DOI: 10.1016/j.jece.2024.112705
  13. Zhang, S., An, Z., Su, X., Hou, A., Liu, L., Zhang, L., He, Q., Sun, F., Lei, Z., Lin, H., Lai, J. (2023). Phenol degradation at high salinity by a resuscitated strain Pseudomonas sp. SAS26: kinetics and pathway. Journal of Environmental Chemical Engineering. 11, 110182. DOI: 10.1016/j.jece.2023.110182
  14. Vaez, Z., Javanbakht, V. (2020). Synthesis, characterization and photocatalytic activity of ZSM-5/ZnO nanocomposite modified by Ag nanoparticles for methyl orange degradation. Journal of Photochemistry Photobiology A: Chemistry. 388, 112064. DOI: 10.1016/j.jphotochem.2019.112064
  15. Khataee, A., Pons, M-N. Zahraa, O., (2009). Photocatalytic degradation of three azo dyes using immobilized TiO2 nanoparticles on glass plates activated by UV light irradiation: Influence of dye molecular structure. Journal of Hazardous Materials. 168, 451-457. DOI: 10.1016/j.jhazmat.2009.02.052
  16. Sinar Mashuri, S.I., Ibrahim, M.L., Kasim, M.F., Mastuli, M.S., Rashid, U., Abdullah, A.H., Islam, A., Asikin Mijan, N., Tan, Y.H., Mansir, N. (2020). Photocatalysis for Organic Wastewater Treatment: From the Basis to Current Challenges for Society. Catalysts. 10, 1260. DOI: 10.3390/catal10111260
  17. Mahgoub, S.A., Qattan, S.Y., Salem, S.S., Abdelbasit, H.M., Raafat, M., Ashkan, M.F., Al-Quwaie, D.A., Motwali, E.A., Alqahtani, F.S., Abd El-Fattah, H.I. (2023). Characterization and Biodegradation of Phenol by Pseudomonas aeruginosa and Klebsiella variicola Strains Isolated from Sewage Sludge and Their Effect on Soybean Seeds Germination. Molecules. 28, 1203. DOI: 10.3390/molecules28031203
  18. Babaei, A.A., Golshan, M., Kakavandi, B. (2021). A heterogeneous photocatalytic sulfate radical-based oxidation process for efficient degradation of 4-chlorophenol using TiO2 anchored on Fe oxides@carbon. Process Safety Environmental Protection. 149, 35-47. DOI: 10.1016/j.psep.2020.10.028
  19. Bashiri, F., Khezri, S.M., Kalantary, R.R., Kakavandi, B. (2020). Enhanced photocatalytic degradation of metronidazole by TiO2 decorated on magnetic reduced graphene oxide: Characterization, optimization and reaction mechanism studies. Journal of Molecular Liquids. 314, 113608. DOI: 10.1016/j.molliq.2020.113608
  20. Zhang, T., Liu, Y., Rao, Y., Li, X., Yuan, D., Tang, S., Zhao, Q., (2020). Enhanced photocatalytic activity of TiO2 with acetylene black and persulfate for degradation of tetracycline hydrochloride under visible light. Chemical Engineering Journal. 384, 123350. DOI: 10.1016/j.cej.2019.123350
  21. Rahman, Z.U., Wei, N., Feng, M., Wang, D. (2019). TiO2 hollow spheres with separated Au and RuO2 co-catalysts for efficient photocatalytic water splitting. International Journal of Hydrogen Energy. 44, 13221-13231. DOI: 10.1016/j.ijhydene.2019.03.176
  22. Ratnawati, R., Enjarlis, E., Yuli, A.H., Marcelinus, C., Slamet, S. (2020). Degradation of Phenol in Pharmaceutical Wastewater using TiO2/Pumice and O3/Active Carbon. Bulletin of Chemical Reaction Engineering & Catalysis, 15 (1) 2020, 146-154. DOI: 10.9767/bcrec.15.1.4432.146-154
  23. Aslam, M., Qamar, M., Soomro, M.T., Ismail, I.M., Salah, N., Almeelbi, T., Gondal, M., Hameed, A. (2016). The effect of sunlight induced surface defects on the photocatalytic activity of nanosized CeO2 for the degradation of phenol and its derivatives. Applied Catalysis B: Environmental. 180, 391-402. DOI: 10.1016/j.apcatb.2015.06.050
  24. Abdullah, H., Khan, M.R., Pudukudy, M., Yaakob, Z., Ismail, N.A. (2015). CeO2-TiO2 as a visible light active catalyst for the photoreduction of CO2 to methanol. Journal of Rare Earths. 33, 1155-1161. DOI: 10.1016/S1002-0721(14)60540-8
  25. Montini, T., Melchionna, M., Monai, M., Fornasiero, P. (2016). Fundamentals and Catalytic Applications of CeO2-Based Materials. Chemical Reviews. 116, 5987-6041. DOI: 10.1021/acs.chemrev.5b00603
  26. Konsolakis, M., (2016). The role of Copper–Ceria interactions in catalysis science: Recent theoretical and experimental advances. Applied Catalysis B: Environmental. 198, 49-66. DOI: 10.1016/j.apcatb.2016.05.037
  27. Konsolakis, M., Lykaki, M. (2020). Recent Advances on the Rational Design of Non-Precious Metal Oxide Catalysts Exemplified by CuOx/CeO2 Binary System: Implications of Size, Shape and Electronic Effects on Intrinsic Reactivity and Metal-Support Interactions. Catalysts. 10, 160. DOI: 10.3390/catal10020160
  28. Melchionna, M., Fornasiero, P. (2014). The role of ceria-based nanostructured materials in energy applications. Materials Today. 17, 349-357. DOI: 10.1016/j.mattod.2014.05.005
  29. Tang, W.-X., Gao, P.-X. (2016). Nanostructured cerium oxide: preparation, characterization, and application in energy and environmental catalysis. MRS Communications. 6, 311-329. DOI: 10.1557/mrc.2016.52
  30. Corberan, V.C., Rives, V., Stathopoulos, V. (2019). Recent applications of nanometal oxide catalysts in oxidation reactions. In Advanced Nanomaterials for Catalysis and Energy, (Elsevier), 227-293. DOI: 10.1016/B978-0-12-814807-5.00007-3
  31. Paier, J., Penschke, C., Sauer, J. (2013). Oxygen Defects and Surface Chemistry of Ceria: Quantum Chemical Studies Compared to Experiment. Chemical Reviews. 113, 3949-3985. DOI: 10.1021/cr3004949
  32. Zhang, H., Wang, J. (2017). Catalytic Ozonation of Humic Acids by Ce–Ti Composite Catalysts. Kinetics and Catalysis. 58, 734-740. DOI: 10.1134/S0023158417060167
  33. Siriwong, C., Wetchakun, N., Inceesungvorn, B., Channei, D., Samerjai, T., Phanichphant, S. (2012). Doped-metal oxide nanoparticles for use as photocatalysts. Progress in Crystal Growth and Characterization of Materials. 58, 145-163. DOI: 10.1016/j.pcrysgrow.2012.02.004
  34. Tian, J., Sang, Y., Zhao, Z., Zhou, W., Wang, D., Kang, X., Liu, H., Wang, J., Chen, S., Cai, H. (2013). Enhanced Photocatalytic Performances of CeO2/TiO2 Nanobelt Heterostructures. Small. 9, 3864-3872. DOI: 10.1002/smll.201202346
  35. Ameen, S., Shaheer Akhtar, M., Seo, H-K., Shin, H-S. (2014). Solution-processed CeO2/TiO2 nanocomposite as potent visible light photocatalyst for the degradation of bromophenol dye. Chemical Engineering Journal. 247, 193-198. DOI: 10.1016/j.cej.2014.02.104
  36. Cano-Franco, J.C., Alvarez-Lainez, M. (2019). Effect of CeO2 content in morphology and optoelectronic properties of TiO2-CeO2 nanoparticles in visible light organic degradation. Materials Science in Semiconductor Processing. 90, 190-197. DOI: 10.1016/j.mssp.2018.10.017
  37. Pudukudy, M., Jia, Q., Yuan, J., Megala, S., Rajendran, R., Shan, S. (2020). Influence of CeO2 loading on the structural, textural, optical and photocatalytic properties of single-pot sol-gel derived ultrafine CeO2/TiO2 nanocomposites for the efficient degradation of tetracycline under visible light irradiation. Materials Science in Semiconductor Processing. 108, 104891. DOI: 10.1016/j.mssp.2019.104891
  38. Jun, L., Wang, L-l., Fei, Z-Y., Xian, C., Tang, J-H., Cui, M-F., Xu, Q. (2016). Structure and properties of amorphous CeO2@TiO2 catalyst and its performance in the selective catalytic reduction of NO with NH3. Journal of Fuel Chemistry Technology. 44, 954-960. DOI: 10.1016/S1872-5813(16)30043-3
  39. Mukhlish, M.Z.B., Islam, M.A., Rahman, M.A., Hossain, S., Islam, M.A., Uddin, M.T. (2021). Facile solid-state synthesis of heterojunction CeO2/TiO2 nanocomposite as an efficient photocatalyst for the degradation of organic pollutants. Desalination Water Treatment. 230, 169-183. DOI: 10.5004/dwt.2021.27416
  40. Nasir, M., Xi, Z., Xing, M., Zhang, J., Chen, F., Tian, B., Bagwasi, S. (2013). Study of Synergistic Effect of Ce- and S‑Codoping on the Enhancement of Visible-Light Photocatalytic Activity of TiO2. The Journal of Physical Chemistry: C, 117, 9520-9528. DOI: 10.1021/jp402575w
  41. Gao, X., Jiang, Y., Fu, Y., Zhong, Y., Luo, Z., Cen, K. (2010). Preparation and characterization of CeO2/TiO2 catalysts for selective catalytic reduction of NO with NH3. Catalysis Communications. 11, 465-469. DOI: 10.1016/j.catcom.2009.11.024
  42. Fang, J., Bi, X., Si, D., Jiang, Z., Huang, W. (2007). Spectroscopic studies of interfacial structures of CeO2–TiO2 mixed oxides. Applied Surface Science, 253, 8952-8961. DOI: 10.1016/j.apsusc.2007.05.013
  43. Wang, X., Xu, H., Luo, X., Li, M., Dai, M., Chen, Q., Song, H. (2021). Enhanced photocatalytic properties of CeO2/TiO2 heterostructures for phenol degradation. Colloid and Interface Science Communications. 44, 100476. DOI: 10.1016/j.colcom.2021.100476
  44. Priyanka, K., Tresa, S. A., Jaseentha, O., Varghese, T. (2013). Cerium doped nanotitania-extended spectral response for enhanced photocatalysis. Materials Research Express. 1, 015003. DOI: 10.1088/2053-1591/1/1/015003
  45. Rouquerol, F., Rouquerol, J., Sing, K. (1999). CHAPTER 2 - Thermodynamics of Adsorption at the Gas–Solid Interface. In Adsorption by Powders and Porous Solids, Rouquerol, F., Rouquerol, J., Sing, K. eds. (Academic Press), 27-50. DOI: 10.1016/B978-012598920-6/50003-8
  46. Xu, W., Yu, Y., Zhang, C., He, H. (2008). Selective catalytic reduction of NO by NH3 over a Ce/TiO2 catalyst. Catalysis Communications. 9, 1453-1457. DOI: 10.1016/j.catcom.2007.12.012
  47. Al-Hamdi, A.M., Sillanpaa, M., Dutta, J. (2016). Intermediate formation during photodegradation of phenol using lanthanum doped tin dioxide nanoparticles. Research on Chemical Intermediates. 42, 3055-3069. DOI: 10.1007/s11164-015-2197-9
  48. Xiang, Q., Yu, J., Wang, W., Jaroniec, M. (2011). Nitrogen self-doped nanosized TiO2 sheets with exposed {001} facets for enhanced visible-light photocatalytic activity. Chemical Communications. 47, 6906-6908. DOI: 10.1039/C1CC11740H
  49. Wang, T., Sun, D.-C. (2008). Preparation and characterization of nanometer-scale powders ceria by electrochemical deposition method. Materials Research Bulletin. 43, 1754-1760. DOI: 10.1016/j.materresbull.2007.07.008
  50. Andreescu, D., Matijevic, E., Goia, D.V. (2006). Formation of uniform colloidal ceria in polyol. Colloids Surfaces A: Physicochemical Engineering Aspects. 291, 93-100. DOI: 10.1016/j.colsurfa.2006.05.006
  51. Liu, J., Zhao, Z., Wang, J., Xu, C., Duan, A., Jiang, G., Yang, Q. (2008). The highly active catalysts of nanometric CeO2-supported cobalt oxides for soot combustion. Applied Catalysis B: Environmental. 84, 185-195. DOI: 10.1016/j.apcatb.2008.03.017
  52. McDevitt, N.T., Baun, W.L. (1964). Infrared absorption study of metal oxides in the low frequency region (700-240 cm−1). Spectrochimica Acta. 20, 799-808. DOI: 10.1016/0371-1951(64)80079-5
  53. Larbot, A., Laaziz, I., Marignan, J., Quinson, J. (1992). Porous texture of a titanium oxide gel: evolution as a function of medium used. Journal of Non-crystalline Solids. 147, 157-161. DOI: 10.1016/S0022-3093(05)80610-6
  54. Chhor, K., Bocquet, J., Pommier, C., (1992). Syntheses of submicron TiO2 powders in vapor, liquid and supercritical phases, a comparative study. Materials Chemistry Physics. 32, 249-254. DOI: 10.1016/0254-0584(92)90207-O
  55. Ouidri, S., Khalaf, H. (2009). Synthesis of benzaldehyde from toluene by a photocatalytic oxidation using TiO2-pillared clays. Journal of PhotochemistryPhotobiology A: Chemistry. 207, 268-273. DOI: 10.1016/j.jphotochem.2009.07.019
  56. Dali, A., Rekkab-Hammoumraoui, I., Choukchou-Braham, A., Bachir, R. (2015). Allylic oxidation of cyclohexene over ruthenium-doped titanium-pillared clay. RSC Advances. 5, 29167-29178. DOI: 10.1039/C4RA17129B
  57. Kurniawan, Y.S., Yuliati, L. (2021). Activity Enhancement of P25 Titanium Dioxide by Zinc Oxide for Photocatalytic Phenol Degradation. Bulletin of Chemical Reaction Engineering & Catalysis, 16 (2), 310-319. DOI: 10.9767/bcrec.16.2.10319.310-319
  58. Maciel, C.G., de Freitas Silva, T., Hirooka, M.I., Belgacem, M.N., Assaf, J.M. (2012). Effect of nature of ceria support in CuO/CeO2 catalyst for PROX-CO reaction. Fuel. 97, 245-252. DOI: 10.1016/j.fuel.2012.02.004
  59. Deus, R., Cilense, M., Foschini, C., Ramirez, M., Longo, E., Simoes, A. (2013). Influence of mineralizer agents on the growth of crystalline CeO2 nanospheres by the microwave-hydrothermal method. Journal of Alloys Compounds. 550, 245-251. DOI: 10.1016/j.jallcom.2012.10.001
  60. Ohsaka, T., Izumi, F., Fujiki, Y. (1978). Raman spectrum of anatase, TiO2. Journal of Raman Spectroscopy. 7, 321-324. DOI: 10.1002/jrs.1250070606
  61. Ohsaka, T. (1980). Temperature Dependence of the Raman Spectrum in Anatase TiO2. Journal of the Physical Society of Japan. 48, 1661-1668. DOI: 10.1143/JPSJ.48.1661
  62. Coloon, G., Pijolat, M., Valdivieso, F., Vidal, H., Kaspar, J., Finocchio, E., Daturi, M., Pijolat, M., Valdivieso, F., Vidal, H., Kaspar, J., Finocchio, E., Daturi, M., Binet, J. C., Lavalley, J. T., Baker, R., Bernal, S. (1998). Surface and structural characterization of CexZr1-xO2 CEZIRENCAT mixed oxides as potential three-way catalyst promoters. Journal of the Chemical Society, Faraday Transactions. 94, 3717-3726. DOI: 10.1039/A807680D
  63. Weber, W., Hass, K., McBride, J. (1993). Raman study of CeO2: Second-order scattering, lattice dynamics, and particle-size effects. Physical Review B. 48, 178. DOI: 10.1103/PhysRevB.48.178
  64. Dhanalakshmi, J., Iyyapushpam, S., Nishanthi, S., Malligavathy, M., Padiyan, D.P. (2017). Investigation of oxygen vacancies in Ce coupled TiO2 nanocomposites by Raman and PL spectra. Advances in Natural Sciences: Nanoscience Nanotechnology. 8, 015015. DOI: 10.1088/2043-6254/aa5984
  65. Ding, J., Zhong, Q., Zhang, S. (2015); A New Insight into Catalytic Ozonation with Nanosized Ce–Ti Oxides for NOx Removal: Confirmation of Ce–O–Ti for Active Sites. Industrial Engineering Chemistry Research. 54, 2012-2022. DOI: 10.1021/ie504100b
  66. Tian, F., Zhang, Y., Zhang, J., Pan, C., (2012). Raman Spectroscopy: A New Approach to Measure the Percentage of Anatase TiO2 Exposed (001) Facets. The Journal of Physical Chemistry C, 116, 7515-7519. DOI: 10.1021/jp301256h
  67. Santara, B., Pal, B., Giri, P. (2011). Signature of strong ferromagnetism and optical properties of Co doped TiO2 nanoparticles. Journal of Applied Physics. 110, 114322-113101. DOI: 10.1063/1.3665883
  68. Ghasemi, S., Rahimnejad, S., Setayesh, S.R., Rohani, S., Gholami, M. (2009). Transition metal ions effect on the properties and photocatalytic activity of nanocrystalline TiO2 prepared in an ionic liquid. Journal of Hazardous Materials. 172, 1573-1578. DOI: 10.1016/j.jhazmat.2009.08.029
  69. Jiang, B., Zhang, S., Guo, X., Jin, B., Tian, Y. (2009). Preparation and photocatalytic activity of CeO2/TiO2 interface composite film. Applied Surface Science. 255, 5975-5978. DOI: 10.1016/j.apsusc.2009.01.049
  70. Xu, Y-H., Zeng, Z-X. (2008). The preparation, characterization, and photocatalytic activities of Ce-TiO2/SiO2. Journal of Molecular Catalysis A: Chemical. 279, 77-81. DOI: 10.1016/j.molcata.2007.09.016
  71. Li, W., Ma, Q., Wang, X., Chu, X-S., Wang, F., Wang, X-C., Wang, C-Y. (2020). Enhanced photoresponse and fast charge transfer: three-dimensional macroporous g-C3N4/GO-TiO2 nanostructure for hydrogen evolution. Journal of Materials Chemistry A. 8, 19533-19543. DOI: 10.1039/D0TA07178A
  72. Tomova, D., Iliev, V., Eliyas, A., Rakovsky, S. (2015). Promoting the oxidative removal rate of oxalic acid on gold-doped CeO2/TiO2 photocatalysts under UV and visible light irradiation. Separation Purification Technology. 156, 715-723. DOI: 10.1016/j.seppur.2015.10.070
  73. Hashmi, S., Batalha, G.F., Van Tyne, C.J., Yilbas, B.S. (2014). Comprehensive Materials Processing (Elsevier).4, 187-200. DOI: 10.1016/B978-0-08-096532-1.00410-6
  74. Hadjltaief, H.B., Zina, M.B., Galvez, M.E., Da Costa, P., (2016). Photocatalytic degradation of methyl green dye in aqueous solution over natural clay-supported ZnO–TiO2 catalysts. Journal of Photochemistry Photobiology A: Chemistry. 315, 25-33. DOI: 10.1016/j.jphotochem.2015.09.008
  75. Jeong, M.-G., Park, E.J., Seo, H.O., Kim, K.-D., Kim, Y.D., Lim, D.C. (2013). Humidity effect on photocatalytic activity of TiO2 and regeneration of deactivated photocatalysts. Applied Surface Science. 271, 164-170. DOI: 10.1016/j.apsusc.2013.01.155
  76. Wang, J., Liu, X., Li, R., Qiao, P., Xiao, L., Fan, J. (2012). TiO2 nanoparticles with increased surface hydroxyl groups and their improved photocatalytic activity. Catalysis Communications. 19, 96-99. DOI: 10.1016/j.catcom.2011.12.028
  77. Zhang, J., Zhao, D., Wang, J., Yang, L. (2009). Photocatalytic oxidation of dibenzothiophene using TiO2/bamboo charcoal. Journal of Materials Science. 44, 3112-3117. DOI: 10.1007/s10853-009-3413-z
  78. Wang, C., Zhu, W., Xu, Y., Xu, H., Zhang, M., Chao, Y., Yin, S., Li, H., Wang, J. (2014). Preparation of TiO2/g-C3N4 composites and their application in photocatalytic oxidative desulfurization. Ceramics International, 40, 11627-11635. DOI: 10.1016/j.ceramint.2014.03.156
  79. Rani, S., Roy, S.C., Paulose, M., Varghese, O.K., Mor, G.K., Kim, S., Yoriya, S., LaTempa, T.J., Grimes, C. (2010). Synthesis and applications of electrochemically self-assembled titaniananotube arrays. Physical Chemistry Chemical Physics. 12, 2780-2800. DOI: 10.1039/B924125F
  80. Tian, J., Zhao, Z., Kumar, A., Boughton, R.I., Liu, H. (2014). Recent progress in design, synthesis, and applications of one-dimensional TiO2 nanostructured surface heterostructures: a review. Chemical Society Reviews. 43, 6920-6937. DOI: 10.1039/C4CS00180J
  81. Nolan, M., Fearon, J.E., Watson, G.W. (2006). Oxygen vacancy formation and migration in ceria. Solid State Ionics. 177, 3069-3074. DOI: 10.1016/j.ssi.2006.07.045
  82. Xue, W., Zhang, G., Xu, X., Yang, X., Liu, C., Xu, Y. (2011). Preparation of titania nanotubes doped with cerium and their photocatalytic activity for glyphosate. Chemical Engineering Journal. 167, 397-402. DOI: 10.1016/j.cej.2011.01.007
  83. Choudhury, B., Chetri, P., Choudhury, A. (2014). Oxygen defects and formation of Ce3+ affecting the photocatalytic performance of CeO2 nanoparticles. RSC Advances. 4, 4663-4671. DOI: 10.1039/C3RA44603D
  84. Park, H., Kim, H-I., Moon, G-H., Choi, W. (2016). Photoinduced charge transfer processes in solar photocatalysis based on modified TiO2. Energy Environmental Science and Pollution Research. 9, 411-433. DOI: 10.1039/C5EE02575C
  85. Belver, C., Bedia, J., Rodriguez, J. (2015), Titania–clay heterostructures with solar photocatalytic applications. Applied Catalysis B: Environmental. 176, 278-287. DOI: 10.1016/j.apcatb.2015.04.004
  86. Elidrissi, B., Addou, M., Regragui, M., Monty, C., Bougrine, A., Kachouane, A. (2000). Structural and optical properties of CeO2 thin films prepared by spray pyrolysis. Thin Solid Films. 379, 23-27. DOI: 10.1016/S0040-6090(00)01404-8
  87. Zheng, S-Y., Andersson-Faldt, A., Stjerna, B., Granqvist, C. (1993). Optical properties of sputter-deposited cerium oxyfluoride thin films. Applied Optics. 32, 6303-6309. DOI: 10.1364/AO.32.006303
  88. Hao, C., Li, J., Zhang, Z., Ji, Y., Zhan, H., Xiao, F., Wang, D., Liu, B., Su, F. (2015). Enhancement of photocatalytic properties of TiO2 nanoparticles doped with CeO2 and supported on SiO2 for phenol degradation. Applied Surface Science. 331, 17-26. DOI: 10.1016/j.apsusc.2015.01.069
  89. Lu, X., Li, X., Qian, J., Miao, N., Yao, C., Chen, Z. (2016). Synthesis and characterization of CeO2/TiO2 nanotube arrays and enhanced photocatalytic oxidative desulfurization performance. Journal of Alloys and Compounds. 661, 363-371. DOI: 10.1016/j.jallcom.2015.11.148
  90. Li, M., Gao, X., Liu, H., Wang, H., Zhao, Q., Wang, N. (2020). Preparation of heterogeneous Fenton catalyst γ-Cu-Ce-Al2O3 and the evaluation on degradation of phenol. Environmental Science and Pollution Research. 27, 21476-21486. DOI: 10.1007/s11356-020-08648-w
  91. Nguyen, A.T., Juang, R-S. (2015). Photocatalytic degradation of p-chlorophenol by hybrid H2O2 and TiO2 in aqueous suspensions under UV irradiation. Journal of Environmental Management. 147, 271-277. DOI: 10.1016/j.jenvman.2014.08.023
  92. Behnajady, M., Modirshahla, N., Shokri, M. (2004). Photodestruction of Acid Orange 7 (AO7) in aqueous solutions by UV/H2O2: influence of operational parameters. Chemosphere. 55, 129-134. DOI: 10.1016/j.chemosphere.2003.10.054
  93. Galindo, C., Jacques, P., Kalt, A. (2001). Photochemical and photocatalytic degradation of an indigoid dye: a case study of acid blue 74 (AB74). Journal of Photochemistry Photobiology A: Chemistry. 141, 47-56. DOI: 10.1016/S1010-6030(01)00435-X
  94. Rubio-Clemente, A., Chica, E., Penuela, G.A. (2017) Kinetic model describing the UV/H2O2 degradation of phenol in aqueous solutions. Chemical Industry Chemical Engineering Quarterly. 23, 547-562. DOI: 10.2298/CICEQ161119008R
  95. Fetterolf, M.L., Patel, H.V., Jennings, J.M. (2003). Adsorption of Methylene Blue and Acid Blue 40 on Titania from Aqueous Solution. Journal of Chemical Engineering Data. 48, 831-835. DOI: 10.1021/je025589r
  96. Mills, A., Le Hunte, S. (1997). An overview of semiconductor photocatalysis. Journal of Photochemistry Photobiology A: Chemistry. 108, 1-35. DOI: 10.1016/S1010-6030(97)00118-4
  97. Rappoport, Z. (2003). The Chemistry of Phenols, Parts 1 and 2. Edited by (John Wiley & Sons)
  98. Sin, J.-C., Lam, S.-M., Lee, K.-T., Mohamed, A.R. (2013). Preparation and photocatalytic properties of visible light-driven samarium-doped ZnO nanorods. Ceramics International. 39, 5833-5843. DOI: 10.1016/j.ceramint.2013.01.004
  99. Li Puma, G., Yue, P.L. (2002). Effect of the Radiation Wavelength on the Rate of Photocatalytic Oxidation of Organic Pollutants. Industrial Engineering Chemistry Research. 41, 5594-5600. DOI: 10.1021/ie0203274
  100. Konstantinou, I.K., Albanis, T.A. (2004). TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: A review. Applied Catalysis B: Environmental. 49, 1-14. DOI: 10.1016/j.apcatb.2003.11.010
  101. Modirshahla, N., Hassani, A., Behnajady, M.A., Rahbarfam, R. (2011). Effect of operational parameters on decolorization of Acid Yellow 23 from wastewater by UV irradiation using ZnO and ZnO/SnO2 photocatalysts. Desalination. 271, 187-192. DOI: 10.1016/j.desal.2010.12.027
  102. Daneshvar, N., Rabbani, M., Modirshahla, N., Behnajady, M. (2004). Kinetic modeling of photocatalytic degradation of Acid Red 27 in UV/TiO2 process. Journal of Photochemistry Photobiology A: Chemistry. 168, 39-45. DOI: 10.1016/j.jphotochem.2004.05.011
  103. Chong, M.N., Jin, B., Chow, C.W., Saint, C. (2010). Recent developments in photocatalytic water treatment technology: A review. Water Research. 44, 2997-3027. DOI: 10.1016/j.watres.2010.02.039
  104. Gaya, U.I., Abdullah, A.H. (2008). Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 9, 1-12. DOI: 10.1016/j.jphotochemrev.2007.12.003
  105. Laoufi, N., Tassalit, D., Bentahar, F. (2008). The degradation of phenol in water solution by TiO2 photocatalysis in a helical reactor. Global NEST Journal. 10, 404-418. DOI: 10.30955/gnj.000525
  106. Soltani, T., Entezari, M.H. (2014). Solar-Fenton catalytic degradation of phenolic compounds by impure bismuth ferrite nanoparticles synthesized via ultrasound. Chemical Engineering Journal. 251, 207-216. DOI: 10.1016/j.cej.2014.04.021
  107. Gatou, M.-A., Fiorentis, E., Lagopati, N., Pavlatou, E.A. (2023). Photodegradation of Rhodamine B and Phenol Using TiO2/SiO2 Composite Nanoparticles: A Comparative Study. Water. 15, 2773. DOI: 10.3390/w15152773
  108. Molla, M., Tateishi, I., Furukawa, M., Katsumata, H., Suzuki, T., Knaeco, S., (2017). Evaluation of Reaction Mechanism for Photocatalytic Degradation of Dye with Self-Sensitized TiO2 under Visible Light Irradiation. Open Journal of Inorganic Non-metallic Materials. 07, 1-7. DOI: 10.4236/ojinm.2017.71001
  109. Paul, T., Das, D., Das, B.K., Sarkar, S., Maiti, S., Chattopadhyay, K.K. (2019). CsPbBrCl2/g-C3N4 type II heterojunction as efficient visible range photocatalyst. Journal of Hazardous Materials. 380, 120855. DOI: 10.1016/j.jhazmat.2019.120855
  110. Ghamarpoor, R., Fallah, A., Jamshidi, M. (2024). A Review of Synthesis Methods, Modifications, and Mechanisms of ZnO/TiO2-Based Photocatalysts for Photodegradation of Contaminants. ACS Omega. 9, 25457-25492. DOI: 10.1021/acsomega.3c08717

Last update:

No citation recorded.

Last update:

No citation recorded.