skip to main content

Bimetallic Ni–Cu/ZSM-5 Catalysts for Enhanced Phenol and Vanillin Production from Benzyl Phenyl Ether and Lignin

1Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia

2Solid Inorganic Framework Laboratory, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia

Received: 12 Dec 2025; Revised: 14 Jan 2026; Accepted: 15 Jan 2026; Available online: 18 Jan 2026; Published: 30 Apr 2026.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2026 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Bio-based phenolic chemicals from lignin represent a sustainable alternative to fossil aromatics. This study examines the catalytic conversion of benzyl phenyl ether (BPE) and compares its reactivity with isolated lignin from raw woody biomass waste (ILWB). Hierarchical ZSM-5 zeolite catalysts were synthesized and modified with bimetallic Ni–Cu and monometallic (Ni⁰ and Cu⁰) species. Catalyst characterization by Fourier Transform Infra-Red (FTIR), X-ray Diffraction (XRD), Scanning Electron Microscope - Energy Dispersive X-Ray (SEM-EDX), X-ray Fluorescence (XRF), and Brunauer, Emmett, and Teller (BET) surface area confirmed distinct physicochemical features for each catalyst. Catalytic reactions were conducted in a batch reactor at 100–300 °C for 30 minutes. Products were analyzed by HPLC, identifying phenol and vanillin as key products. The bimetallic Ni–Cu/ZSM-5 catalyst exhibited alloy formation, producing a synergistic effect that enhanced catalytic activity. BPE conversion reached 94.29%, with a phenol yield of 32.25% at 250 °C. Additionally, ILWB lignin was readily converted, achieving 75.31% conversion and a vanillin yield of 15.85% at 200 °C. These findings confirm that Ni–Cu-modified hierarchical ZSM-5 demonstrates superior catalytic behavior for the valorization of lignin and its model compound into high-value chemical products. Copyright © 2026 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Supporting Information (SI) PDF
Keywords: Bimetallic Ni–Cu; Hierarchical ZSM-5; BPE; Lignin; Phenol; Vanillin
Funding: Ministry of Research, Technology, and Higher Education Republic of Indonesia under contract PMDSU NKB-436/UN2.RST/HKP.05.00/2020

Article Metrics:

  1. Haq, I., Mazumder, P., Kalamdhad, A.S. (2020). Recent advances in removal of lignin from paper industry wastewater and its industrial applications – A review. Bioresource Technology, 312(April), 123636. DOI: 10.1016/j.biortech.2020.123636
  2. Rasid, N.S.A., Shamjuddin, A., Amin, N.A.S. (2021). Chemical and structural changes of ozonated empty fruit bunch (EFB) in a ribbon-mixer reactor. Bulletin of Chemical Reaction Engineering and Catalysis, 16(2), 383–395. DOI: 10.9767/bcrec.16.2.10506.383-395
  3. Chio, C., Sain, M., Qin, W. (2019). Lignin utilization: A review of lignin depolymerization from various aspects. Renewable and Sustainable Energy Reviews, 107(December 2018), 232–249. DOI: 10.1016/j.rser.2019.03.008
  4. Bajwa, D.S., Pourhashem, G., Ullah, A.H., Bajwa, S.G. (2019). A concise review of current lignin production, applications, products and their environment impact. Industrial Crops and Products, 139(June), 111526. DOI: 10.1016/j.indcrop.2019.111526
  5. Ragauskas, A.J., Beckham, G.T., Biddy, M.J., Chandra, R., Chen, F., Davis, M.F., Davison, B.H., Dixon, R.A., Gilna, P., Keller, M., Langan, P., Naskar, A.K., Saddler, J.N., Tschaplinski, T.J., Tuskan, G.A., Wyman, C.E. (2014). Lignin valorization: Improving lignin processing in the biorefinery. Science, 344(6185) DOI: 10.1126/science.1246843
  6. Weng, C., Peng, X., Han, Y. (2021). Depolymerization and conversion of lignin to value-added bioproducts by microbial and enzymatic catalysis. Biotechnology for Biofuels, 14(1), 1–22. DOI: 10.1186/s13068-021-01934-w
  7. Attard, T., Hunt, A., Matharu, A., Houghton, J., Polikarpov, I. (2014). Introduction to Chemicals from Biomass, Second Edition. In: Introduction to Chemicals from Biomass: Second Edition. pp. 31–52.DOI: 10.1002/9781118714478.ch2
  8. Chen, X., Weixiang, G., Tsang, C.-W., Haoquan, H., Changhai, L. (2019). Lignin Valorizations with Ni Catalysts for Renewable Chemicals and Fuels Productions. Catalysts, 9(6), 488–527
  9. Díez, D., Urueña, A., Piñero, R., Barrio, A., Tamminen, T. (2020). Determination of hemicellulose, cellulose, and lignin content in different types of biomasses by thermogravimetric analysis and pseudocomponent kinetic model (TGA-PKM Method). Processes, 8(9) DOI: 10.3390/pr8091048
  10. Xu, Y., Guo, L., Zhang, H., Zhai, H., Ren, H. (2019). Research status, industrial application demand and prospects of phenolic resin. RSC Advances, 9(50), 28924–28935. DOI: 10.1039/c9ra06487g
  11. Qiang, H., Wang, J., Liu, H., Zhu, Y. (2023). From vanillin to biobased aromatic polymers. Polymer Chemistry, 14(37), 4255–4274. DOI: 10.1039/d3py00767g
  12. Ben, H., Ragauskas, A.J. (2011). Pyrolysis of kraft lignin with additives. Energy and Fuels, 25(10), 4662–4668. DOI: 10.1021/ef2007613
  13. Kantarelis, E., Javed, R., Stefanidis, S., Psarras, A., Iliopoulou, E., Lappas, A. (2019). Engineering the Catalytic Properties of HZSM5 by Cobalt Modification and Post-synthetic Hierarchical Porosity Development. Topics in Catalysis, 62(7–11), 773–785. DOI: 10.1007/s11244-019-01179-w
  14. Naron, D.R., Collard, F.X., Tyhoda, L., Görgens, J.F. (2019). Production of phenols from pyrolysis of sugarcane bagasse lignin: Catalyst screening using thermogravimetric analysis – Thermal desorption – Gas chromatography – Mass spectroscopy. Journal of Analytical and Applied Pyrolysis, 138(December 2018), 120–131. DOI: 10.1016/j.jaap.2018.12.015
  15. Zhang, C.T., Zhang, L., Li, Q., Wang, Y., Liu, Q., Wei, T., Dong, D., Salavati, S., Gholizadeh, M., Hu, X. (2019). Catalytic pyrolysis of poplar wood over transition metal oxides: Correlation of catalytic behaviors with physiochemical properties of the oxides. Biomass and Bioenergy, 124(February), 125–141. DOI: 10.1016/j.biombioe.2019.03.017
  16. Sun, L., Wang, Z., Chen, L., Yang, S., Xie, X., Gao, M., Zhao, B., Si, H., Li, J., Hua, D. (2020). Catalytic fast pyrolysis of biomass into aromatic hydrocarbons over Mo-modified ZSM-5 catalysts. Catalysts, 10(9), 1–10. DOI: 10.3390/catal10091051
  17. Shen, Y., Liu, C., Cui, C., Ren, H., Gu, M., Liu, H., Zhou, Z., Qi, F. (2024). Effect of Cu-modified HZSM-5 zeolites on catalytic pyrolysis of lignin to producing aromatic hydrocarbons. Fuel, 361(October 2023), 130719. DOI: 10.1016/j.fuel.2023.130719
  18. Mauriello, F., Ariga-Miwa, H., Paone, E., Pietropaolo, R., Takakusagi, S., Asakura, K. (2020). Transfer hydrogenolysis of aromatic ethers promoted by the bimetallic Pd/Co catalyst. Catalysis Today, 357(June 2019), 511–517. DOI: 10.1016/j.cattod.2019.06.071
  19. Yan, B., Lin, X., Chen, Z., Cai, Q., Zhang, S. (2021). Selective production of phenolic monomers via high efficient lignin depolymerization with a carbon based nickel-iron-molybdenum carbide catalyst under mild conditions. Bioresource Technology, 321(November 2020), 124503. DOI: 10.1016/j.biortech.2020.124503
  20. Jeong, S., Yang, S., Kim, D.H. (2017). Depolymerization of Protobind lignin to produce monoaromatic compounds over Cu/ZSM-5 catalyst in supercritical ethanol. Molecular Catalysis, 442, 140–146. DOI: 10.1016/j.mcat.2017.09.010
  21. Wu, F.P., Zhao, Y.P., Fu, Z.P., Qiu, L. Le, Xiao, J., Li, J., Liu, F.J., Cao, J.P. (2023). Catalytic transfer hydrogenolysis mechanism of benzyl phenyl ether over NiCu/Al2O3 using isopropanol as hydrogen source. Fuel Processing Technology, 250(June), 107874. DOI: 10.1016/j.fuproc.2023.107874
  22. Korányi, T.I., Huang, X., Coumans, A.E., Hensen, E.J.M. (2017). Synergy in Lignin Upgrading by a Combination of Cu-Based Mixed Oxide and Ni-Phosphide Catalysts in Supercritical Ethanol. ACS Sustainable Chemistry and Engineering, 5(4), 3535–3543. DOI: 10.1021/acssuschemeng.7b00239
  23. Salam, M.A., Arora, P., Ojagh, H., Cheah, Y.W., Olsson, L., Creaser, D. (2019). NiMoS on alumina-USY zeolites for hydrotreating lignin dimers: Effect of support acidity and cleavage of C-C bonds. Sustainable Energy and Fuels, 4(1), 149–163. DOI: 10.1039/c9se00507b
  24. Bensafi, B., Chouat, N., Djafri, F. (2023). The universal zeolite ZSM-5: Structure and synthesis strategies. A review. Coordination Chemistry Reviews, 496(July 2022) DOI: 10.1016/j.ccr.2023.215397
  25. Herlina, I., Krisnandi, Y.K., Ridwan, M. (2024). Oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid over CuO and NiO modified natural sourced hierarchical ZSM-5. South African Journal of Chemical Engineering, 47(December 2022), 75–82. DOI: 10.1016/j.sajce.2023.10.011
  26. Helmi, M.R.A., Rahayu, D.U.C., Pratama, A.P., Khatrin, I., Ramadhani, A.N., Krisnandi, Y.K. (2023). Comparative study of microwave-assisted versus conventional heated reactions of biomass conversion into levulinic acid over hierarchical Mn3O4/ZSM-5 zeolite catalysts. Carbon Resources Conversion, 6(3), 245–252. DOI: 10.1016/j.crcon.2023.02.005
  27. Sofyani, U., Krisnandi, Y.K., Abdullah, I. (2022). Synthesis and Characterization of Mesoporous Carbon Supported Ni-Ga Catalyst for Low-Pressure CO2 Hydrogenation. Bulletin of Chemical Reaction Engineering & Catalysis, 17(2), 278–285. DOI: 10.9767/bcrec.17.2.13377.278-285
  28. Ramadhani, A.N., Abdullah, I., Krisnandi, Y.K. (2022). Effect of Physicochemical Properties of Co and Mo Modified Natural Sourced Hierarchical ZSM-5 Zeolite Catalysts on Vanillin and Phenol Production from Diphenyl Ether. Bulletin of Chemical Reaction Engineering & Catalysis, 17(1), 225–239. DOI: 10.9767/bcrec.17.1.13372.225-239
  29. Pratama, A.P., Krisnandi, Y.K., Abdullah, I. (2020). Catalytic depolymerization of lignin from wood waste biomass over natural sourced ZSM-5 catalysts. IOP Conference Series: Materials Science and Engineering, 902(1) DOI: 10.1088/1757-899X/902/1/012051
  30. Herlina, I., Krisnandi, Y.K., Ridwan, M. (2025). Production of 2,5-furandicarboxylic acid (FDCA) from delignified rice husk waste over Cu and Ni metal-organic framework catalyst. Case Studies in Chemical and Environmental Engineering, 11(March), 101233. DOI: 10.1016/j.cscee.2025.101233
  31. Gille, T., Seifert, M., Marschall, M.S., Bredow, S., Schneider, T., Busse, O., Reschetilowski, W., Weigand, J.J. (2021). Conversion of oxygenates on H-ZSM-5 zeolites—effects of feed structure and Si/Al ratio on the product quality. Catalysts, 11(4), 1–20. DOI: 10.3390/catal11040432
  32. Shahzad, A., Ahmad, I., Manzoor, A., Kashif, M., Ahsan, M., He, M., Razzokov, J. (2023). Synthesis of nickel nanowires ( Ni-NWs ) as high ferromagnetic material by electrodeposition technique. Heliyon, 9(1), e12576. DOI: 10.1016/j.heliyon.2022.e12576
  33. Xu, H., Li, Q., Bi, Z., Xu, D., Guo, Y. (2025). Sustainable lactic acid production from glycerol via hydrothermal catalysis over highly dispersed cu nanoparticles on bio-tar derived carbon. Journal of Environmental Chemical Engineering, 13(September) DOI: 10.1016/j.jece.2025.119275
  34. Smail, H., Rehan, M., Shareef, K., Ramli, Z., Nizami, A.-S., Gardy, J. (2019). Synthesis of Uniform Mesoporous Zeolite ZSM-5 Catalyst for Friedel-Crafts Acylation. ChemEngineering, 3(2), 35. DOI: 10.3390/chemengineering3020035
  35. Srihasam, S., Thyagarajan, K., Korivi, M., Lebaka, V.R., Mallem, S.P.R. (2020). Phytogenic generation of NiO nanoparticles using stevia leaf extract and evaluation of their in-vitro antioxidant and antimicrobial properties. Biomolecules, 10(1) DOI: 10.3390/biom10010089
  36. Rita, A., Sivakumar, A., Martin Britto Dhas, S.A. (2019). Influence of shock waves on structural and morphological properties of copper oxide NPs for aerospace applications. Journal of Nanostructure in Chemistry, 9(3), 225–230. DOI: 10.1007/s40097-019-00313-0
  37. Mohamed, A., Shaban, M., Kordy, M.G.M., Al-senani, G.M., Eissa, M.F., Hamdy, H. (2024). Fabrication and characterization of NiCu/GO and NiCu/rGO nanocomposites for fuel cell application. RSC Advances, 14, 6776–6792. DOI: 10.1039/D3RA07822A
  38. Marguí, E., Queralt, I., de Almeida, E. (2022). X-ray fluorescence spectrometry for environmental analysis: Basic principles, instrumentation, applications and recent trends. Chemosphere, 303(P1), 135006. DOI: 10.1016/j.chemosphere.2022.135006
  39. Ma, P., Zhou, H., Li, Y., Wang, M., Nastase, S.A.F., Zhu, M., Cui, J., Cavallo, L., Cheng, K., Dutta Chowdhury, A. (2024). Selectivity descriptors of the catalytic n-hexane cracking process over 10-membered ring zeolites. Chemical Science, 15(30), 11937–11945. DOI: 10.1039/d4sc00603h
  40. Shen, Z., Li, W., Jin, J., Lu, Z., Wang, L., Jiang, Y., Yuan, L. (2025). Highly efficient oxidation of methane into methanol over Ni-promoted Cu/ZSM-5. RSC Advances, 15(11), 8244–8252. DOI: 10.1039/d5ra01115a
  41. Denardin, F.G., Perez-Lopez, O.W. (2020). Methane dehydroaromatization over Fe-M/ZSM-5 catalysts (M= Zr, Nb, Mo). Microporous and Mesoporous Materials, 295(October 2019), 109961. DOI: 10.1016/j.micromeso.2019.109961
  42. Tanjung, M.F., Zulys, A., Krisnandi, Y.K. (2025). Step-wise conversion of glucose into 2,5 furandicarboxylic acid (FDCA) in GVL-H2O solvent using hierarchical NiO/ZSM-5 catalyst. Molecular Catalysis, 586(July), 115403. DOI: 10.1016/j.mcat.2025.115403
  43. Guan, X., Duan, C., Wang, H., Lu, B., Zhao, J., Cai, Q. (2021). Tuneable oxidation of styrene to benzaldehyde and benzoic acid over Co/ZSM-5. New J Chem, 45(38), 18192–18201. DOI: 10.1039/D1NJ03145G
  44. Kucherov, F.A., Romashov, L. V, Galkin, K.I., Ananikov, V.P. (2018). Chemical Transformations of Biomass-Derived C6-Furanic Platform Chemicals for Sustainable Energy Research, Materials Science, and Synthetic Building Blocks. ACS Sustainable Chemistry & Engineering, 6(7), 8064–8092. DOI: 10.1021/acssuschemeng.8b00971
  45. Poliakoff, M., Licence, P., George, M.W. (2018). UN sustainable development goals: How can sustainable/green chemistry contribute? By doing things differently. Current Opinion in Green and Sustainable Chemistry, 13, 146–149. DOI: 10.1016/j.cogsc.2018.04.011
  46. Liu, C., Wang, H., Karim, A.M., Sun, J., Wang, Y. (2014). Catalytic fast pyrolysis of lignocellulosic biomass. Chemical Society Reviews, 43(22), 7594–7623. DOI: 10.1039/c3cs60414d
  47. Zhou, N., Thilakarathna, W.P.D.W., He, Q.S., Rupasinghe, H.P.V. (2022). A Review: Depolymerization of Lignin to Generate High-Value Bio-Products: Opportunities, Challenges, and Prospects. Frontiers in Energy Research, 9(January), 1–18. DOI: 10.3389/fenrg.2021.758744
  48. Rana, M., Ghosh, S., Nshizirungu, T., Park, J.H. (2023). Catalytic depolymerization of Kraft lignin to high yield alkylated-phenols over CoMo/SBA-15 catalyst in supercritical ethanol. RSC Advances, 13(43), 30022–30039. DOI: 10.1039/d3ra05018a
  49. Sun, H., Luo, Z., Wang, W., Li, S., Xue, S. (2021). Porosity roles of micro-mesostructured ZSM-5 in catalytic fast pyrolysis of cellulolytic enzyme lignin for aromatics. Energy Conversion and Management, 247(July), 114753. DOI: 10.1016/j.enconman.2021.114753
  50. Lazaridis, P.A., Fotopoulos, A.P., Karakoulia, S.A. (2018). Catalytic Fast Pyrolysis of Kraft Lignin With Conventional , Mesoporous and Nanosized ZSM-5 Zeolite for the Production of Alkyl-Phenols and Aromatics. 6(July) DOI: 10.3389/fchem.2018.00295
  51. Kumar, C.R., Anand, N., Kloekhorst, A., Cannilla, C., Bonura, G., Frusteri, F., Barta, K., Heeres, H.J. (2015). Solvent free depolymerization of Kraft lignin to alkyl-phenolics using supported NiMo and CoMo catalysts. Green Chemistry, 17(11), 4921–4930. DOI: 10.1039/c5gc01641j
  52. Guo, H., Zhao, Y., Chang, J.S., Lee, D.J. (2023). Lignin to value-added products: Research updates and prospects. Bioresource Technology, 384(June), 129294. DOI: 10.1016/j.biortech.2023.129294
  53. García-Rollán, M., Rivas-Márquez, M.N., Bertran-Llorens, S., Deuss, P.J., Ruiz-Rosas, R., Rosas, J.M., Rodríguez-Mirasol, J., Cordero, T. (2024). Biobased Vanillin Production by Oxidative Depolymerization of Kraft Lignin on a Nitrogen- and Phosphorus-Functionalized Activated Carbon Catalyst. Energy and Fuels, 38(8), 7018–7032. DOI: 10.1021/acs.energyfuels.4c00108
  54. Hernández-Giménez, A.M., Heracleous, E., Pachatouridou, E., Horvat, A., Hernando, H., Serrano, D.P., Lappas, A.A., Bruijnincx, P.C.A., Weckhuysen, B.M. (2021). Effect of Mesoporosity, Acidity and Crystal Size of Zeolite ZSM-5 on Catalytic Performance during the Ex-situ Catalytic Fast Pyrolysis of Biomass. ChemCatChem, 13(4), 1207–1219. DOI: 10.1002/cctc.202001778
  55. Ding, Y.L., Wang, H.Q., Xiang, M., Yu, P., Li, R.Q., Ke, Q.P. (2020). The Effect of Ni-ZSM-5 Catalysts on Catalytic Pyrolysis and Hydro-Pyrolysis of Biomass. Frontiers in Chemistry, 8(September), 1–11. DOI: 10.3389/fchem.2020.00790
  56. Shu, R., Lin, Y., Zhou, L., Luo, B., Yang, S., Tian, Z., Wang, C., Shi, Z., Nayak, R.R., Gupta, N.K. (2024). Enhanced lignin hydrogenolysis through synergy-induced bimetallic NiCu catalyst for chemocatalytic production of aromatic monomers. Chemical Engineering Science, 286(November 2023), 119654. DOI: 10.1016/j.ces.2023.119654
  57. Phillips, E. V., Tricker, A.W., Stavitski, E., Hatzell, M., Sievers, C. (2024). Mechanocatalytic Hydrogenolysis of the Lignin Model Dimer Benzyl Phenyl Ether over Supported Palladium Catalysts. ACS Sustainable Chemistry and Engineering, 12(33), 12306–12312. DOI: 10.1021/acssuschemeng.4c03590
  58. Han, Y., Simmons, B.A., Singh, S. (2023). Perspective on oligomeric products from lignin depolymerization: their generation, identification, and further valorization. Industrial Chemistry & Materials, 1(2), 207–223. DOI: 10.1039/d2im00059h
  59. Abolivier, R., Eckhardt, H.G., Sullivan, J.A. (2025). Study of Ni-ZSM-5 Catalysts in the Hydrogenolysis of Benzyl Phenyl Ether: Effects of Ni Loading, Morphology, and Reaction Conditions. ACS Omega, 10(12), 12306–12318. DOI: 10.1021/acsomega.4c11273
  60. Li, J., Gao, M., Yan, W., Yu, J. (2022). Regulation of the Si/Al ratios and Al distributions of zeolites and their impact on properties. Chemical Science, 14(8), 1935–1959. DOI: 10.1039/d2sc06010h
  61. Ávila, M.I., Alonso-Doncel, M.M., Cueto, J., Briones, L., Gómez-Pozuelo, G., Escola, J.M., Serrano, D.P., Peral, A., Botas, J.A. (2025). Production of high value-added phenolic compounds through lignin catalytic pyrolysis over ion-exchanged hierarchical ZSM-5 and Beta zeolites. Catalysis Today, 456(March) DOI: 10.1016/j.cattod.2025.115343
  62. Gao, Y., Zheng, B., Wu, G., Ma, F., Liu, C. (2016). Effect of the Si/Al ratio on the performance of hierarchical ZSM-5 zeolites for methanol aromatization. RSC Advances, 6(87), 83581–83588. DOI: 10.1039/c6ra17084f
  63. Gou, J., Wang, Z., Li, C., Qi, X., Vattipalli, V., Cheng, Y.T., Huber, G., Conner, W.C., Dauenhauer, P.J., Mountziaris, T.J., Fan, W. (2017). The effects of ZSM-5 mesoporosity and morphology on the catalytic fast pyrolysis of furan. Green Chemistry, 19(15), 3549–3557. DOI: 10.1039/c7gc01395g
  64. Toledano, A., Serrano, L., Pineda, A., Romero, A.A., Luque, R., Labidi, J. (2014). Microwave-assisted depolymerisation of organosolv lignin via mild hydrogen-free hydrogenolysis: Catalyst screening. Applied Catalysis B: Environmental, 145, 43–55. DOI: 10.1016/j.apcatb.2012.10.015
  65. Tang, Y., Yang, X., Zhang, Q., Lv, D., Zuo, S., Li, J. (2025). Comprehensive Analysis of the Synergistic Effects of Bimetallic Oxides in CoM/γ-Al2O3 (M = Cu, Fe, or Ni) Catalysts for Enhancing Toluene Combustion Efficiency. Molecules, 30(5), 1–14. DOI: 10.3390/molecules30051188

Last update:

No citation recorded.

Last update:

No citation recorded.