skip to main content

Crystal Phase-Dependence of Ru@TiO2 Catalysts on the Product Selectivity in the Aqueous Phase Hydrogenolysis of Furfuryl Alcohol

1Department of Chemistry, Lambung Mangkurat University, Jl. A. Yani Km 36,0 Banjarbaru 70714, Banjarbaru, Indonesia

2Catalysis for Sustainable Energy and Environment (CATSuRe), Inorganic Materials and Catalysis (IMCat) Laboratory, Lambung Mangkurat University, Jl. A. Yani Km 36,0 Banjarbaru 70714, Indonesia

3School of Chemistry, Joseph Black Building. University of Glasgow, Glasgow, G12 SQQ, United Kingdom

4 Research Centre for Quantum Physics, BRIN, KST BJ Habibie, Serpong, Tangerang Selatan, Indonesia

5 Research Centre for Chemistry, BRIN, KST BJ Habibie, Serpong, Tangerang, Indonesia

6 Research Centre for Catalysis, BRIN, KST BJ Habibie, Serpong, Tangerang, Indonesia

7 Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan

View all affiliations
Received: 28 Nov 2025; Revised: 14 Jan 2026; Accepted: 15 Jan 2026; Available online: 17 Jan 2026; Published: 30 Apr 2026.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2026 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

The crystal phase-dependence of ruthenium supported on titania (Ru@TiO2) catalysts on the product selectivity in the aqueous phase hydrogenolysis of furfuryl alcohol (FFalc) was investigated. The supported ruthenium nanoparticles (RuNPs) catalysts on TiO2 with different phases, c.a. rutile (R), anatase (A), and brookite (B) were employed. The Ru@TiO2(R) catalysed the hydrogenation-rearrangement reaction of furan ring to afford cyclopentanone/cyclopentanol (CPO/CPL) as the main product. The presence of high surface acidity in Ru@TiO2(R) catalyst promoted the hydrogenation-rearrangement of furan ring leading to CPO/CPL as the main product as indicated by NH3-TPD and pyridine-ATR-IR results. In contrast, the Ru@TiO2(A) catalyst selectively hydrogenolysed the furan ring to produce 1,5-pentanediol (1,5-PeD). This high selectivity of 1,5-PeD over Ru@TiO2(A) catalyst may be affected by the high dispersion of Ru NPs on TiO2 facets as depicted by the high H2-uptake and small particle sizes. Copyright © 2026 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: TiO2 facets; furfuryl alcohol; hydrogenolysis-rearrangement; CPO/CPL, 1,5-pentanediol
Funding: The Indonesian Endowment Funds for Education (LPDP) under contract BRIN-RIIM2 scheme 79/IV/KS/11/2022 ; DRPTM-Kemendiktisaintek under contract 056/E5/PG.02.00.PL/2024 ; Universitas Lambung Mangkurat under contract 1878/UN8.2/PG/2025

Article Metrics:

  1. Gérardy, R., Debecker, D.P., Estager, J., Luis, P., Monbaliu, J.-C.M. (2020). Continuous Flow Upgrading of Selected C2–C6 Platform Chemicals Derived from Biomass. Chemical Reviews, 120(15), 7219–7347. DOI: 10.1021/acs.chemrev.9b00846
  2. Tomishige, K., Nakagawa, Y., Tamura, M. (2017). Selective hydrogenolysis and hydrogenation using metal catalysts directly modified with metal oxide species. Green Chemistry, 19(13), 2876–2924. DOI: 10.1039/c7gc00620a
  3. Xu, C., Paone, E., Rodríguez-Padrón, D., Luque, R., Mauriello, F. (2020). Recent catalytic routes for the preparation and the upgrading of biomass derived furfural and 5-hydroxymethylfurfural. Chemical Society Reviews, 49(13), 4273–4306. DOI: 10.1039/d0cs00041h
  4. Sun, X., Wen, B., Wang, F., Zhang, W., Zhao, K., Liu, X. (2024). Research advances on the catalytic conversion of biomass-derived furfural into pentanediols. Catalysis Communications, 187, 106864. DOI: 10.1016/j.catcom.2024.106864
  5. Tomishige, K., Honda, M., Sugimoto, H., Liu, L., Yabushita, M., Nakagawa, Y. (2024). Recent progress on catalyst development for ring-opening C-O hydrogenolysis of cyclic ethers in the production of biomass-derived chemicals. Carbon Neutrality, 3(17), 1–41. DOI: 10.1007/s43979-024-00090-y
  6. Zhu, Y., Zhao, W., Zhang, J., An, Z., Ma, X., Zhang, Z., Jiang, Y., Zheng, L., Shu, X., Song, H., Xiang, X., He, J. (2020). Selective Activation of C–OH, C–O–C, or C═C in Furfuryl Alcohol by Engineered Pt Sites Supported on Layered Double Oxides. ACS Catalysis, 10(15), 8032–8041. DOI: 10.1021/acscatal.0c01276
  7. Gilkey, M.J., Mironenko, A.V., Yang, L., Vlachos, D.G., Xu, B. (2016). Insights into the Ring-Opening of Biomass-Derived Furanics over Carbon-Supported Ruthenium. ChemSusChem, 9(21), 3113–3121. DOI: 10.1002/cssc.201600681
  8. He, J., Huang, K., Barnett, K.J., Krishna, S.H., Alonso, D.M., Brentzel, Z.J., Burt, S.P., Walker, T., Banholzer, W.F., Maravelias, C.T., Hermans, I., Dumesic, J.A., Huber, G.W. (2017). New catalytic strategies for α,ω-diols production from lignocellulosic biomass. Faraday Discussions, 202, 247–267. DOI: 10.1039/C7FD00036G
  9. Li, X., Deng, Q. (2023). Review on Metal–Acid Tandem Catalysis for Hydrogenative Rearrangement of Furfurals to C5 Cyclic Compounds. Transactions of Tianjin University, 29(5), 347–359. DOI: 10.1007/s12209-023-00367-w
  10. Xu, W., Wang, H., Liu, X., Ren, J., Wang, Y., Lu, G. (2011). Direct catalytic conversion of furfural to 1,5-pentanediol by hydrogenolysis of the furan ring under mild conditions over Pt/Co2AlO4 catalyst. Chemical Communications, 47(13), 3924–3926. DOI: 10.1039/c0cc05775d
  11. Tong, T., Xia, Q., Liu, X., Wang, Y. (2017). Direct hydrogenolysis of biomass-derived furans over Pt/CeO2 catalyst with high activity and stability. Catalysis Communications, 101, 129–133. DOI: 10.1016/j.catcom.2017.08.005
  12. Tong, T., Liu, X., Guo, Y., Norouzi Banis, M., Hu, Y., Wang, Y. (2018). The critical role of CeO2 crystal-plane in controlling Pt chemical states on the hydrogenolysis of furfuryl alcohol to 1,2-pentanediol. Journal of Catalysis, 365, 420–428. DOI: 10.1016/j.jcat.2018.07.023
  13. Lin, Q., Liu, X.Y., Jiang, Y., Wang, Y., Huang, Y., Zhang, T. (2014). Crystal phase effects on the structure and performance of ruthenium nanoparticles for CO2 hydrogenation. Catalysis Science and Technology, 4(7), 2058–2063. DOI: 10.1039/c4cy00030g
  14. Abdel-Mageed, A.M., Wiese, K., Hauble, A., Bansmann, J., Rabeah, J., Parlinska-Wojtan, M., Brückner, A., Behm, R.J. (2021). Steering the selectivity in CO2 reduction on highly active Ru/TiO2 catalysts: Support particle size effects. Journal of Catalysis, 401, 160–173. DOI: 10.1016/j.jcat.2021.07.020
  15. Cui, B., Wang, H., Han, J., Ge, Q., Zhu, X. (2022). Crystal-phase-depended strong metal-support interactions enhancing hydrodeoxygenation of m-cresol on Ni/TiO2 catalysts. Journal of Catalysis, 413, 880–890. DOI: 10.1016/j.jcat.2022.07.039
  16. Tang, Y., Xu, K., Weng, L., Xu, Y., Tan, L., Wu, L. (2025). Crystal Phase of TiO2 Determines Ni–O–Ti Interface and Enables Nickel Catalysts in Aqueous-Phase Cyclopentanone Synthesis from Furfural. ChemCatChem. 17(22), e01205. DOI: 10.1002/cctc.202501205
  17. Amin, B., Aubrecht, J., Kikhtyanin, O., Grechman, E., Alves, G.A.S., Tampieri, A., Föttinger, K., Jędrzejczyk, M., Ruppert, A.M., Ruiz-Zepeda, F., Kubička, D. (2025). Switchable Behavior of Ru–TiO2 Catalysts in HMF Conversion. ACS Sustainable Chemistry and Engineering, 13(29), 11652–11667. DOI: 10.1021/acssuschemeng.5c04908
  18. Rodiansono, R., Azzahra, A.S., Mikrianto, E., Ridhoni, A., Mustari, I., Nurfitriani, A., Bodoi, T.S.D., Sanjaya, R.E., Suarso, E., Ansyah, P.R. (2025). Screening Support of Bimetallic Ruthenium-Tin Catalysts for Aqueous Phase Hydrogenolysis of Furfuryl Alcohol to 1,5-Pentanediol. Bulletin of Chemical Reaction Engineering & Catalysis, 20(2), 293–306. DOI: 10.9767/bcrec.20357
  19. Rodiansono, R., Azzahra, A.S., Santoso, U.T., Mikrianto, E., Suarso, E., Sembiring, K.C., Adilina, I.B., Sunnardianto, G.K., Afandi, A. (2025). Highly efficient and selective aqueous phase hydrogenolysis of furfural to 1,5-pentanediol using bimetallic Ru–SnO x /γ-Al 2 O 3 catalysts. Catalysis Science & Technology, 15(3), 808–821. DOI: 10.1039/D4CY01138D
  20. Bodoi, T.S.D., Azzahra, A.S., Ansyari, M.R., Mikrianto, E., Rodiansono, R., Sanjaya, R.E., Ansyah, P.R. (2024). Selective Conversion of Furfuryl Alcohol to 1,5-Pentanediol Over Ru-Sn/γ-Al2O3-TiO2 : Effect of Calcination Temperature of γ-Al2O3-TiO2. In: 1st ICWDGs2024. AIP Conference Proceedings, pp. 325–338
  21. Azzahra, A.S., Dewi, H.P., Mikrianto, E., Sembiring, K.C., Sunnardianto, G.K., Nata, I.F., Rodiansono, R., Jayanudin, J. (2023). Bimetallic Ru-Sn as Effective Catalysts for the Selective Hydrogenation of Biogenic Platform Chemicals at Room Temperature. Bulletin of Chemical Reaction Engineering & Catalysis, 18(4), 700–712. DOI: 10.9767/bcrec.20067
  22. Rodiansono, R., Syahruji, Dewi, H.P., Azzahra, A.S., Sembiring, K.C., Adilina, I.B., Afandi, A. (2024). Pivotal MoOx-decorated Ru/C with a monomeric structure boosts the room temperature and low-pressure hydrogenation of levulinic acid to γ−valerolactone. Renewable Energy, 229, 120747. DOI: 10.1016/j.renene.2024.120747
  23. Azzahra, A.S., Rodiansono, R., Nata, I.F., Sembiring, K.C., Adilina, I.B., Afandi, A. (2025). Thermocatalytic synthesis of 2-butanol from biomass-derived levulinic acid using carbon-doped titania-supported ruthenium. Sustainable Energy & Fuels, 9(5), 1279–1292. DOI: 10.1039/D4SE01815J
  24. Putri, K., Annisa, A., Husain, S., Rodiansono, R. (2020). One-pot Synthesis of Carbon-doped TiO2 with Bimetallic Ni-Ag co-catalysts in Photodegradation of Methylene Blue under UV and Visible Irradiation. Bulletin of Chemical Reaction Engineering & Catalysis, 15(1), 35–42. DOI: 10.9767/bcrec.15.1.4811.35-42
  25. Dombrowski, R.J., Lastoskie, C.M., Hyduke, D.R. (2001). The Horvath–Kawazoe method revisited. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 187–188, 23–39. DOI: 10.1016/S0927-7757(01)00618-5
  26. Shen, X., Garces, L.-J., Ding, Y., Laubernds, K., Zerger, R.P., Aindow, M., Neth, E.J., Suib, S.L. (2008). Behavior of H2 chemisorption on Ru/TiO2 surface and its application in evaluation of Ru particle sizes compared with TEM and XRD analyses. Applied Catalysis A: General, 335(2), 187–195. DOI: 10.1016/j.apcata.2007.11.017
  27. Kellner, C., Bell, A.T. (1982). Effects of dispersion on the activity and selectivity of alumina-supported ruthenium catalysts for carbon monoxide hydrogenation. Journal of Catalysis, 75(2), 251–261. DOI: 10.1016/0021-9517(82)90207-X
  28. Khaja Masthan, S., Rao, R., Chary, V.R., Rao, V., Rao, K. (1994). Influence of metal loading and temperature on hydrogen chemisorption and hydrogenation activity of Ru/gamma-Al2O3 catalysts. Indian Journal of Chemistry, 33, 26–32. URL: http://nopr.niscpr.res.in/handle/123456789/40398
  29. Gueye, I., Kim, J., Kumara, L.S.R., Yang, A., Seo, O., Chen, Y., Song, C., Hiroi, S., Kusada, K., Kobayashi, H., Kitagawa, H., Sakata, O. (2019). Investigation of selective chemisorption of fcc and hcp Ru nanoparticles using X-ray photoelectron spectroscopy analysis. Journal of Catalysis, 380, 247–253. DOI: 10.1016/j.jcat.2019.10.004
  30. Rodiansono, R., Azzahra, A.S., Dewi, H.P., Adilina, I.B., Sembiring, K.C. (2023). MoOx-decorated Ru/TiO2 with a monomeric structure boosts the selective one-pot conversion of levulinic acid to 1,4-pentanediol. Catalysis Science & Technology, 13(15), 4466–4476. DOI: 10.1039/D3CY00544E
  31. Primo, A., Concepción, P., Corma, A. (2011). Synergy between the metal nanoparticles and the support for the hydrogenation of functionalized carboxylic acids to diols on Ru/TiO2. Chemical Communications, 47(12), 3613–3615. DOI: 10.1039/c0cc05206j
  32. Cai, W., Li, Y., Zheng, Q., Song, M., Ma, P., Fang, W., Song, W., Lai, W. (2023). Hydrogenative rearrangement of bioderived furfurals to cyclopentanones over Ni/Nb2O5 catalysts: Promotion effect of reducible NbOx and water. Fuel, 338, 127345. DOI: 10.1016/j.fuel.2022.127345
  33. Rodiansono, R., Azzahra, A.S., Mikrianto, E., Sembiring, K.C., Afandi, A., Sunnardianto, G.K., Adilina, I.B. (2025). One-pot synthesis of confined structure Ru3Sn7 alloys on alumina for exceptionally rapid and selective hydrogenolysis of furfuryl alcohol to 1,5-pentanediol. Catalysis Science & Technology, 15(18), 5452–5463. DOI: 10.1039/D5CY00542F
  34. Astuti, M.D., Kristina, D., Rodiansono, R., Mujiyanti, D.R. (2020). One-pot selective conversion of biomass-derived furfural into cyclopentanone/Cyclopentanol over TiO2 supported bimetallic Ni-M (M = Co, Fe) catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 15(1), 231–241. DOI: 10.9767/bcrec.15.1.6307.231-241
  35. Rodiansono, R., Dewi Astuti, M., Hara, T., Ichikuni, N., Shimazu, S. (2019). One-pot selective conversion of C5-furan into 1,4-pentanediol over bulk Ni-Sn alloy catalysts in an ethanol/H2O solvent mixture. Green Chemistry, 21(9), 2307–2315. DOI: 10.1039/c8gc03938k
  36. Liu, F., Ftouni, J., Bruijnincx, P.C.A., Weckhuysen, B.M. (2019). Phase-Dependent Stability and Substrate-Induced Deactivation by Strong Metal-Support Interaction of Ru/TiO 2 Catalysts for the Hydrogenation of Levulinic Acid. ChemCatChem, 11(8), 2079–2088. DOI: 10.1002/cctc.201802040
  37. Azzahra, A.S., Annisa, N., Rodiansono, R., Santoso, U.T., Sanjaya, R.E., Suarsa, E. (2024). Effect of Charcoal-Doping on The Yield of 1,5-Pentanediol and Reusability in Ru-Sn/g-Al2O3-Charcoal Catalysts. In: 1st ICWSDGs2024. AIP Conference Proceedings, pp. 127–138
  38. Lin, H., Zhang, W., Shen, H., Yu, H., An, Y., Lin, T., Zhong, L. (2024). Control of metal–support interaction for tunable CO hydrogenation performance over Ru/TiO2 nanocatalysts. Nanoscale, 16(12), 6151–6162. DOI: 10.1039/D3NR06208B
  39. Zhan, Y., Zhou, C., Jin, F., Chen, C., Jiang, L. (2020). Ru/TiO2 catalyst for selective hydrogenation of benzene: Effect of surface hydroxyl groups and spillover hydrogen. Applied Surface Science, 525 DOI: 10.1016/j.apsusc.2020.146627
  40. Zhao, S., Ma, H., Qu, W., Tian, Z. (2025). Activity enhancement of Ru/TiO2 catalysts for catalytic hydrogenation of amides to amines through controlling strong metal-support interactions. Catalysis Science and Technology, 15(9), 2852–2866. DOI: 10.1039/d5cy00073d
  41. Luo, Z., Bing, Q., Kong, J., Liu, J.Y., Zhao, C. (2018). Mechanism of supported Ru3Sn7 nanocluster-catalyzed selective hydrogenation of coconut oil to fatty alcohols. Catalysis Science and Technology, 8(5), 1322–1332. DOI: 10.1039/c8cy00037a
  42. Zhou, J., Gao, Z., Xiang, G., Zhai, T., Liu, Z., Zhao, W., Liang, X., Wang, L. (2022). Interfacial compatibility critically controls Ru/TiO2 metal-support interaction modes in CO2 hydrogenation. Nature Communications, 13(1) DOI: 10.1038/s41467-021-27910-4
  43. Watanabe, M., Aizawa, Y., Iida, T., Nishimura, R., Inomata, H. (2005). Catalytic glucose and fructose conversions with TiO2 and ZrO2 in water at 473 K: Relationship between reactivity and acid–base property determined by TPD measurement. Applied Catalysis A: General, 295(2), 150–156. DOI: 10.1016/j.apcata.2005.08.007
  44. Azzouz, A., Nistor, D., Miron, D., Ursu, A. V., Sajin, T., Monette, F., Niquette, P., Hausler, R. (2006). Assessment of acid-base strength distribution of ion-exchanged montmorillonites through NH3 and CO2-TPD measurements. Thermochimica Acta, 449(1–2), 27–34. DOI: 10.1016/j.tca.2006.07.019
  45. Tututi-Ríos, E., González, H., Cabrera-Munguia, D.A., Gutiérrez-Alejandre, A., Rico, J.L. (2022). Acid properties of Sn-SBA-15 and Sn-SBA-15-PrSO3H materials and their role on the esterification of oleic acid. Catalysis Today, 394–396, 235–246. DOI: 10.1016/j.cattod.2021.09.008
  46. Rezayan, A., Wang, K., Nie, R., Lu, T., Wang, J., Zhang, Y., Charles Xu, C. (2022). Synthesis of bifunctional tin-based silica–carbon catalysts, Sn/KIT-1/C, with tunable acid sites for the catalytic transformation of glucose into 5-hydroxymethylfurfural. Chemical Engineering Journal, 429, 132261. DOI: 10.1016/j.cej.2021.132261
  47. Tamura, M., Shimizu, K.I., Satsuma, A. (2012). Comprehensive IR study on acid/base properties of metal oxides. Applied Catalysis A: General, 433–434, 135–145. DOI: 10.1016/j.apcata.2012.05.008
  48. Martin, C., Martin, I., Delmoral, C., Rives, V. (1994). FT-IR Assessment Through Pyridine Adsorption of the Surface Acidity of Alkali-Doped MoO3/TiO2. Journal of Catalysis, 146(2), 415–421. DOI: 10.1006/jcat.1994.1079

Last update:

No citation recorded.

Last update:

No citation recorded.