skip to main content

Influence of Nickel and Aluminum in Bentonite for Ethanol-to-Gasoline Reaction

1Research Center for Catalysis, National Research and Innovation Agency, KST. BJ. Habibie PUSPIPTEK Serpong, Tangerang Selatan, Indonesia

2Department of Chemistry, UIN Syarif Hidayatullah Jakarta, Indonesia

3Research Center for Molecular Chemistry, National Research and Innovation Agency, KST. BJ. Habibie PUSPIPTEK Serpong, Tangerang Selatan, Indonesia

Received: 29 Sep 2025; Revised: 10 Dec 2025; Accepted: 11 Dec 2025; Available online: 30 Dec 2025; Published: 30 Apr 2026.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2026 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Bentonite can be used as a catalyst due to its flexible structure. However, it has several drawbacks, including low thermal and hydrothermal stability, as well as a small surface area and pore volume. This study aims to modify the structure of bentonite using the pillared clay (PILC) method, in order to improve its physicochemical properties and catalytic activity. The bentonite was pillared with aluminium (Al/PILC), nickel (Ni/PILC), and a combination of both metals (Al-Ni/PILC). Catalyst characterization was carried out using X-Ray Diffraction (XRD), X-Ray Fluorescence (XRF), Surface Area Analyzer (SAA), Fourier Transform Infrared Spectroscopy (FTIR), Temperature Programmed Desorption of Ammonia (TPD-NH₃), Thermogravimetric Analysis-Differential Scanning Calorimetry (TGA-DSC), and Gas Chromatography with Flame Ionization Detection (GC-FID). XRD analysis showed an increase in the interlayer spacing, the largest basal spacing is observed in Al/PILC. XRF results indicated an increase in the composition of Al₂O₃ and NiO in all four catalysts. SAA analysis demonstrated an increase in surface area and pore volume across the catalysts, the highest surface area is exhibited by Al/PILC (187.83 m2/g), while the largest pore diameter is observed in Al-Ni/PILC (12.83 nm). The acidity analysis using TPD-NH₃ shows that Al/PILC possesses the highest acidity value of 2.34 mmol/g. The presence of Brønsted acid sites was confirmed through FTIR analysis. TGA-DSC analysis indicated an improvement in the thermal stability of all tested catalysts. The Al/PILC catalyst showed the best performance at 150 °C. When the reaction temperature was increased to 250 °C, the Al-Ni/PILC catalyst demonstrated the highest efficiency in the ethanol-to-gasoline conversion process. Copyright © 2026 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Catalysis; Pillared Clay (PILC); Bimetallic oxide; Ethanol; Gasoline
Funding: BRIN-LPDP under contract (RIIM) B-6952/III.10/KS.00.00/6/2022

Article Metrics:

  1. Robinson, P.R. Petrochemicals. In Petroleum Science and Technology: Downstream; Springer, 2024; pp. 243–291. https://link.springer.com/book/10.1007/978-3-031-46645-8
  2. International Energy Agency. (2023). World Energy Outlook 2023. Paris: IEA. https://www.iea.org/reports/world-energy-outlook-2023
  3. Rinaldi, N., Dwiatmoko, A.A. (2011). Studi Awal Pada Preparasi Katalis Berbasis Lempung Berpilar Untuk Reaksi Etanol Menjadi Gasoline (Etg). Jurnal Kimia Terapan Indonesia, 13(2)
  4. Li, X., Zhang, C., Zhang, X., Wang, S., Meng, Q., Wu, S., Yang, H., Xia, Y., Chen, R. (2016). An acetyl-L-carnitine switch on mitochondrial dysfunction and rescue in the metabolomics study on aluminum oxide nanoparticles. Particle and Fibre Toxicology, 13(1), 4. DOI: 10.1186/s12989-016-0115-y
  5. Shi, D., Wojcieszak, R., Paul, S., Marceau, E. (2019). Ni promotion by Fe: What benefits for catalytic hydrogenation? Catalysts, 9(5), 451. DOI: 10.3390/catal9050451
  6. Aboul-Gheit, A.K., Gad, F.K., Abdel-Aleem, G.M., El-Desouki, D.S., Hmaid, S.M.A., Ghoniem, S.A., Ibrahim, A.H. (2014). Pt, Re and Pt-Re incorporation in sulfated zirconia as catalyst for pentane isomeration. Egypt. J. Pet. 23, 303–314. DOI: 10.1016/j.ejpe.2014.08.006
  7. Demirci, Ü.B., Garin, F. (2002). Kinetic study of n-heptane conversion on sulfated zirconia- supported platinum catalyst: the metal-proton adduct is the active site. J. Mol. Catal. A Chem. 188, 233–243, DOI: 10.1016/S1381-1169(02)00337-0
  8. Veiga, S., Bussi, J. (2016). Steam reforming of crude glycerol over nickel supported on activated carbon. Energy Convers. Manag. 141, 79–84. DOI: 10.1016/j.enconman.2016.04.103
  9. Shah, A.K., Malviya, N., Korde, S.R., Dalai, A.K. (2023). Design of nickel supported hierarchical ZSM-5/USY zeolite bifunctional catalysts for one-pot menthol synthesis. Molecules, 28(2), 743. DOI: 10.3390/molecules28020743
  10. Kadarwarti, S., Rahmawati, F., Rahyu, P.E., Wahyuni, S., Supardi, K.I. (2013). Kinetics and mechanism of Ni/zeolite-catalyzed hydrocracking of palm oil into biofuel. Indones. J. Chem. 13 (1), 77–85. DOI: 10.22146/ijc.21330
  11. Suseno, A., Wijaya, K., Trisunaryanti, W., Roto. (2018). Synthesis and characterization of Ni- Cu doped zirconia-pillared bentonite. Orient. J. Chem. 34 (3), 1–5. DOI: 10.13005/ojc/340332
  12. Balcı, S. (2017). Structural property improvements of bentonite with sulfuric acid activation. Journal of the Turkish Chemical Society Section B: Chemical Engineering, 1(1), 19–32. DOI: 10.18596/jotcsb.31081
  13. Souza, L.K.C., Santos, A.C., Batista, E.A.C., Meirelles, A.J.A. (2013). Liquid–liquid equilibrium for systems containing ethanol, water, and essential oils. Fluid Phase Equilibria, 337, 67–75. DOI: 10.1016/j.fluid.2012.09.022
  14. Du, W., Slany, M., Wang, X., Chen, G., Zhang, J. (2020). The inhibition property and mechanism of a novel low molecular weight zwitterionic copolymer for improving wellbore stability, Polymers 12, 708. DOI: 10.3390/polym12030708
  15. Du, W., Wang, X., Chen, G., Zhang, J., Slany, M. (2020). Synthesis, property and mechanism analysis of a novel polyhydroxy organic amine shale hydration inhibitor. Minerals, 10, 128. DOI: 10.3390/min10020128
  16. Maes N., Heylen I., Cool P., Vasant E.F. (1997). The relation between the synthesis of pillared clay and their resulting porosity. J. Appl. Clay Sci. 12, 43–60. DOI: 10.1016/S0169-1317(96)00036-1
  17. Wang, Q., Shaheen, S.M., Jiang, Y., Li, R., Slany, M., Abdelrahman, H., Kwon, E., Bolan, N., Rinklebe, J., Zhang, Z. (2020). Fe/Mn- and P-modified drinking water treatment residuals reduced Cu and Pb phytoavailability and uptake in a mining soil. J. Hazard. Mater., 403, 123628. DOI: 10.1016/j.jhazmat.2020.123628
  18. Leffler, T., Brackmann, C., Berg, M., Aldén, M., Li, Z. (2017). Online Alkali Measurement during Oxy-fuel Combustion. Energy Procedia, 120, 365–372, DOI: 10.1016/j.egypro.2017.07.217
  19. Rinaldi, R., Schüth, F. (2009). Design of solid catalysts for the conversion of biomass. Energy & Environmental Science, 2(6), 610–626. DOI: 10.1039/B902668A
  20. Wahyuningsih, P. (2022). Bentonit Tersulfatasi sebagai Katalis dalam Produksi Biodiesel dari Minyak Jelantah. QUIMICA: Jurnal Kimia Sains dan Terapan, 4(1), 5–8. DOI: 10.33059/jq.v4i1.4377
  21. Machado, N.R.C.F., Calsavara, V., Astrath, N.G.C., Matsuda, C.K., Paesano, A., Baesso, M.L. (2005). Obtaining hydrocarbons from ethanol over iron-modified ZSM-5 zeolites. Fuel, 84(16), 2064–2070. DOI: 10.1016/j.fuel.2005.05.001
  22. Kloprogge, J.T., Duong, L.V., & Frost, R.L. (2005). A review of the synthesis and characterisation of pillared clays and related porous materials for cracking of vegetable oils to produce biofuels. Environmental Geology, 47(7), 967–981. DOI: 10.1007/s00254-005-1226-1
  23. Suseno, A. (2019). Hydrocracking of palm oil to gasoline on bimetallic Ni-Cu/zirconia pillared bentonite. IOP Conference Series: Materials Science and Engineering, 509, 012005. DOI: 10.1088/1757-899X/509/1/012005
  24. Galeano, L.-A., Vicente, M. Á., & Gil, A. (2014). Catalytic Degradation of Organic Pollutants in Aqueous Streams by Mixed Al/M-Pillared Clays (M = Fe, Cu, Mn). Catalysis Reviews, 56(3), 239–287. DOI: 10.1080/01614940.2014.904182
  25. Widjaya, R.R., Saridewi, N., Putri, A.A., Rinaldi, N., & Dwiatmoko, A.A. (2021). Fe-Cr pillared clay as catalysts for the ethanol to gasoline conversion. IOP Conference Series: Materials Science and Engineering, 1011(1). DOI: 10.1088/1757-899X/1011/1/012008
  26. Aid, A., Andrei, R.D., Amokrane, S., Cammarano, C., Nibou, D., & Hulea, V. (2017). Ni-exchanged cationic clays as novel heterogeneous catalysts for selective ethylene oligomerization. Applied Clay Science, 146, 432–438. DOI: 10.1016/j.clay.2017.06.034
  27. Nauva, F., Santosa, S.J., Prasetya, A., & Siswoyo, E. (2015). Synthesis and characterization of Al-pillared bentonite and its application for phenol adsorption. Indonesian Journal of Chemistry, 15(1), 37–46. DOI: 10.22146/ijc.21210
  28. Gil, A., Korili, S.A., & Vicente, M.A. (2008). Recent advances in the control and characterization of the porous structure of pillared clay catalysts. In Catalysis Reviews - Science and Engineering, 50, 2, 153–221. DOI: 10.1080/01614940802019383
  29. Dewi, D.A.D.N., Simpen, I.N., & Suarsa, I.W. (2020). Synthesis And Characterization Of Photocatalys Fe2O3 Pillared Montmorillonite Doped TiO2 And Its Application For Rhodamine B Phododegradation Using Visible Light Irradiation. Jurnal Kimia, 82. DOI: 10.24843/jchem.2020.v14.i01.p14
  30. Rinaldi, N., Sari, N.L., Sumari, S., Kristiani, A., Agustian, E., Widjaya, R.R., & Dwiatmoko, A. (2024). Performance of sulfided NiMo catalyst supported on pillared bentonite Al and Ti under hydrodeoxygenation reaction of guaiacol. International Journal of Renewable Energy Development, 13(3), 539–548. DOI: 10.61435/ijred.2024.60060
  31. Ramadhaniati, D., Saridewi, N., Dwiatmoko, A. A., Rinaldi, N., Ramdani, D., Putri, A.M.H., & Widjaya, R.R. (2023). Aluminium and zirconium pillared bentonite for ethanol to gasoline conversion process. In AIP Conference Proceedings, 2947, Vol. 2902-No.1. DOI: 10.1063/5.0173147
  32. Widjaya, R.R., Soegijono, B., & Rinaldi, N. (2012). Characterization of Cr/Bentonite and HZSM-5 Zeolite as Catalysts for Ethanol Conversion to Biogasoline. Makara Journal of Science, 16(1), 65–70. DOI: 10.7454/mss.v16i1.1283
  33. Jiang, Y., Huang, T., Dong, L., Qin, Z., & Ji, H. (2018). Ni/bentonite catalysts prepared by solution combustion method for CO2 methanation. Chinese Journal of Chemical Engineering, 2361–2367. DOI: 10.1016/j.cjche.2018.03.029
  34. Lahoues-Chakour, N., Barama, S., Barama, A., Djellouli, B., Domingos, C., & Davidson, A. (2018). Catalytic behavior of nickel loaded on acid-activated and pillared clay in total gas-phase oxidation of ethanol. Journal of Nanoparticle Research, 20(11). DOI: 10.1007/s11051-018-4385-1
  35. Finiels, A., Fajula, F., & Hulea, V. (2014). Nickel-based solid catalysts for ethylene oligomerization – a review. Catal. Sci. Technol., 4(8), 2412–2426. DOI: 10.1039/C4CY00305E
  36. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K.S.W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9–10), 1051–1069. DOI: 10.1515/pac-2014-1117
  37. Saraswati T.E., Bahrudin A., Anwar M. (2016). Effects of Heating Temperature and Binder in the Production of Char-Based Electrical Conductor. ALCHEMY Jurnal Penelitian Kimia, 12(2), 167-178. DOI: 10.20961/alchemy.v12i2.708
  38. Armaroli, T., Simon, L. J., Digne, M., Montanari, T., Bevilacqua, M., Valtchev, V., Patarin, J., & Busca, G. (2006) Effects of crystal size and Si/Al ratio on the surface properties of H-ZSM-5 zeolites. Applied Catalysis A: General, 306, 78–84. DOI: 10.1016/j.apcata.2006.03.030
  39. Khairina, N.N.L., Kristiani, A., Widjaya, R.R., Agustian, E., Dwiatmoko, A.A. (2022). Conversion of fatty acid into biodiesel using solid catalysts of Ti-Zr and Ti-Cr pillared bentonite. AIP Conf. Proc. 2493, 060017. DOI: 10.1063/5.0110942
  40. Machfud, M., & Rusmini, R. (2017). Pengaruh Waktu Interaksi Bentonit Teraktivasi Terhadap Daya Serap Iodium. Indonesian Chemistry and Application Journal, 1(1), 10. DOI: 10.26740/icaj.v1n1.p10-17
  41. Siregar, S.H., & Irma, W. (2016). Sintesis Dan Perbandingan Struktur, Tekstur Bentonit Alam Dan Bentonit Teraktivasi Asam. Photon: Jurnal Sain Dan Kesehatan, 7(01), 137–140. DOI: 10.37859/jp.v7i01.572
  42. Agustian, E., Juwono, A.L., Rinaldi, N., Dwiatmoko, A.A. (2023). Pillaring of bentonite clay with Zr, Ti, and Ti/Zr by ultrasonic technique for biodiesel production. South African Journal of Chemical Engineering, 45, 137–140. DOI: 10.1016/j.sajce.2023.06.001
  43. Wang, G., Hua, Y., Su, X., Komarneni, S., Ma, S., Wang, Y. (2016). Cr(VI) adsorption by montmorillonite nanocomposites. Applied Clay Science, 124–125, 111–118. DOI: 10.1016/j.clay.2016.02.008
  44. Ruslan, Khairuddin, Hardi, J., Mirzan, M. (2020). Characterization of zirconia-pillared clay with sulfate acid activation. AIP Conf. Proc. 2243, 030022. DOI: 10.1063/5.0001508
  45. Binitha, N.N., Sugunan, S. (2006). Preparation, characterization and catalytic activity of titania pillared montmorillonite clays. Microporous and Mesoporous Materials, 93(1–3), 82–89. DOI: 10.1016/j.micromeso.2006.02.005
  46. Fatimah, I., Narsito, N., Wijaya, K. (2011). Effect of Aluminium Content in Aluminium Pillared Montmorillonite on Its Surface Acidity Properties. ITB Journal of Sciences, 43(2), 123–138
  47. Sun, J., Wang, Y. (2014). Recent advances in catalytic conversion of ethanol to chemicals. In ACS Catalysis 4 (4), 1078–1090. DOI: 10.1021/cs4011343
  48. Fayisa, B.A., Xi, Y., Yang, Y., Gao, Y., Li, A., Wang, M.-Y., Lv, J., Huang, S., Wang, Y., Ma, X. (2022). Pt-Modulated Cu/SiO2 Catalysts for Efficient Hydrogenation of CO2-Derived Ethylene Carbonate to Methanol and Ethylene Glycol. Chin. J. Chem. Eng., 41, 366–373. DOI: 10.1016/j.cjche.2021.10.024
  49. Anwar, M.S., Widjaya, R.R., Prasetya, L.B.A., Arfi, A.A., Mabruri, E. (2022). Effect of Grain Size on Mechanical and Creep Rupture Properties of 253 MA Austenitic Stainless Steel. Metals, 12(5), 820. DOI: 10.3390/met12050820
  50. Widjaya, R.R., Juwono, A.L., Rinaldi, N. (2017). Bentonite modification with pillarization method using metal stannum. AIP Conf. Proc. 1904, 020010. DOI: 10.1063/1.5011867
  51. Virkutye J., Varma R.S. (2014). Eco-friendly magnetic iron oxide-pillared montmorillonite for advanced catalytic degradation of dichlorophenol. ACS Sustain. Chem. Eng. 2, 1545–1550. DOI: 10.1021/sc5002512

Last update:

No citation recorded.

Last update:

No citation recorded.