skip to main content

Alkylation of Benzene with Ethanol over ZSM-5 Based La–P Catalysts

1Department of Physical and Colloid Chemistry, Chemistry Faculty, Baku State University, Baku AZ 1148, Azerbaijan

2Faculty of Chemistry, Baku Branch of Moscow State University, Baku, AZ1144, Azerbaijan

Received: 23 Oct 2025; Revised: 25 Dec 2025; Accepted: 26 Dec 2025; Available online: 30 Dec 2025; Published: 30 Apr 2026.
Editor(s): Dmitry Yu. Murzin
Open Access Copyright (c) 2026 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Benzene ethylation in the presence of HZSM-5 zeolites is a promising method for producing ethylbenzene. This study examined the effects of modifying lanthanum and phosphorus as additives to the HZSM-5 catalyst, tested in the temperature range of 300-500 °C, at a benzene to ethanol molar ratio of 2:1 in a hydrogen stream. The influence of promoters on acidity and pore structure was investigated using X-ray Diffraction (XRD), NH3 Temperature Programmed Desorption (NH3-TPD), Scanning Electron Microscope (SEM), Brunauer, Emmett, and Teller (BET), and Barrett-Joyner-Halenda (BJH). Among 4%La samples, 4%P/HZSM-5 demonstrated higher ethylbenzene selectivity and operational stability associated with a decrease in the density of strong acid sites and an increase in zeolite mesoporosity because of modification. Copyright © 2026 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Alkylation; benzene; ethanol; lanthanum; phosphorus; ethylbenzene; selectivity
Funding: Ministry of Science and Education of the Azerbaijan Republic

Article Metrics:

  1. Degnan, T.F., Smith, C.M., Venkat, Ch.R. (2001). Alkylation of aromatics with ethylene and propylene: recent developments in commercial processes. Applied Catalysis A: General, 221(1–2), 283-294. DOI: 10.1016/S0926-860X(01)00807-9
  2. Degnan, T.F. (2003). The implications of the fundamentals of shape selectivity for the development of catalysts for the petroleum and petrochemical industries. Journal of Catalysis, 216(1–2), 32-46. DOI: 10.1016/S0021-9517(02)00105-7
  3. Khlebnikova, E., Yurev, E. (2016). Development of benzene with ethylene alkylation model in the presence of aluminum chloride. Petroleum and Coal, 58, 120-125. https://www.vurup.sk/wp-content/uploads/dlm_uploads/2017/07/pc_1_2016_khlebnikova_405.pdf DOI: ?????????
  4. Perego, C., Ingallina, P. (2004). Combining alkylation and transalkylation for alkylaromatic production. Green Chemistry, 6(6), 274-279. DOI: 10.1039/B403277M
  5. Chandawar, K.H., Kulkarni, S.B., Ratnasamy, P. (1982). Alkylation of benzene with ethanol over ZSM5 zeolites. Applied Catalysis, 4(3), 287-295. DOI: 10.1016/0166-9834(82)80112-7
  6. Lévesque, P., Dao, L.H. (1989). Alkylation of benzene using an aqueous solution of ethanol, Applied Catalysis, 53(2–3), 157-167. DOI: 10.1016/S0166-9834(00)80018-4
  7. Mao, D., Yang, W., Xia, J., Bin, Zh., Song Q., Chen Q. (2005). Highly effective hybrid catalyst for the direct synthesis of dimethyl ether from syngas with magnesium oxide-modified HZSM-5 as a dehydration component. Journal of Catalysis, 230(1), 140-149. DOI: 10.1016/j.jcat.2004.12.007
  8. Bellussi, G., Pazzuconi, G., Perego, C., Girotti, G., Terzoni, G. (1995). Liquid-Phase Alkylation of Benzene with Light Olefins Catalyzed by β-Zeolites. Journal of Catalysis, 157(1), 227-234. DOI: 10.1006/jcat.1995.1283
  9. Corma, A., Llopis, F.J., Martínez, C., Sastre G., Valencia S. (2009). The benefit of multipore zeolites: Catalytic behaviour of zeolites with intersecting channels of different sizes for alkylation reactions. Journal of Catalysis, 268(1), 9-17. DOI: 10.1016/j.jcat.2009.08.012
  10. Odedairo, T., Al-Khattaf, S. (2010). Ethylation of benzene: Effect of zeolite acidity and structure. Applied Catalysis A: General, 385(1–2), 31-45. DOI: 10.1016/j.apcata.2010.06.041
  11. Raj, K.J.A., Padma, E.J.M., Vijayaraghavan, V.R. (2006). Shape-selective reactions with AEL and AFI type molecular sieves alkylation of benzene, toluene and ethylbenzene with ethanol, 2-propanol, methanol and t-butanol. Journal of Molecular Catalysis A: Chemical, 243(1), 99-105. DOI: 10.1016/j.molcata.2005.07.040
  12. Vijayaraghavan, V.R., Raj, K.J.A. (2004). Ethylation of benzene with ethanol over substituted large pore aluminophosphate-based molecular sieves. Journal of Molecular Catalysis A: Chemical, 207(1), 41-50. DOI: 10.1016/S1381-1169(03)00468-0
  13. Gahramanov, T.O., Mammadova, A.Z., Akhmedova, N.F., Mamedov, S.E., Kerimli, F.S., Ahmadov, E.I. (2025). The Effect of Boron Concentration on the Properties and Paraselectivity of Zeolite HZSM-5 in the Methylation Reaction of Ethylbenzene. Bulletin of Chemical Reaction Engineering & Catalysis, 20(2), 245-253. DOI: 10.9767/bcrec.20348
  14. Dong, Zh., Yang, Ch., Zhao, D., Wang, Y., Chu, W., Feng, Zh., Zhu, X., Xin W., Shang Y., Liu Sh., Xu L. (2021). Co-Crystalline ZSM-5/ZSM-11 Nanostructures for Alkylation of Benzene with Ethanol. ACS Applied Nano Materials Journal, 4(10), 10296–10306. DOI: 10.1021/acsanm.1c01805
  15. Parciulea, A.G., Hodosan, C., Nistor, L., Cincu, C. (2014). Synthesis of ethylbenzene by benzene alkylation with bioethanol on zeolitic catalysts synthesis and characterization of the catalyst. Revista de Chimie Bucharest Original Edition, 65(5), 590-593. https://bch.ro/pdfRC/PARCIULEA%20A.pdf%205%2014.pdf DOI: ….????
  16. Huang, F., Hong, Z., Li, L., Miao, L., Gao, X., Zhao, G., Zhu, Z. (2024). Shape-Selective Alkylation of Toluene with Ethanol over a Twin Intergrowth Structured ZSM-5: Modulation of Acidity and Diffusivity via Interface Engineering. Inorganic Chemistry, 63(7), 3506-3515. DOI: 10.1021/acs.inorgchem.3c04325
  17. Emana, A.N., Chand, Sh. (2015). Alkylation of Benzene with Ethanol over HZSM-5 Zeolite Catalyst. International Journal of Innovative Research in Science, Engineering and Technology, (4) 8. DOI: 10.15680/IJIRSET.2015.04080877587
  18. Li, J.H., Wang, Y.N., He, J., Zhu, Z.R. (2012). Alkylation of Benzene with Ethanol on Zeolites Modified with La2O3. Renewable and sustainable energy, 347-353, 3670-3676. DOI: 10.4028/www.scientific.net/AMR.347-353.3670
  19. Imyen, T., Wannapakdee, W., Ittisanronnachai, S., Witoon, Th., Wattanakit, Ch. (2020). Tailoring hierarchical zeolite composites with two distinct frameworks for fine-tuning the product distribution in benzene alkylation with ethanol. Nanoscale Advances, 2, 4437-4449. DOI: 10.1039/D0NA00391C
  20. Saenluang, K., Imyen, Th., Wannapakdee. W., Suttipat, D., Dugkhuntod, P., Ketkaew, M., Thivasasith, A., Wattanakit, Ch. (2020). Hierarchical Nanospherical ZSM-5 Nanosheets with Uniform Al Distribution for Alkylation of Benzene with Ethanol. ACS Applied Nano Materials, 3(4), 3252–3263. DOI: 10.1021/acsanm.9b02568
  21. Rahmani, E., Rahmani, M. (2017). Alkylation of benzene over Fe-based metal organic frameworks (MOFs) at low temperature condition. Microporous and Mesoporous Materials, 249, 118-127. DOI: 10.1016/j.micromeso.2017.04.058
  22. Abdullaeva, N.M., Voskressenskii, L.G., Akhmedova, N.F., Mamedov, S.E. (2021). Alkylation of toluene with isopropanole on zsm-5 type zeolite, modified by lanthanum. Petroleum Chemistry, 61, 190-197. DOI: 10.1134/S0965544121020018
  23. Emana, A.N., Chand, S. (2015). Alkylation of benzene with ethanol over modified HZSM-5 zeolite catalysts. Applied Petrochemical Research, 5, 121–134. DOI: 10.1007/s13203-015-0100-7
  24. Parciulea, A.G., Banu, I., Bozga, G, Hubcă, G., Gaivoronschi, B., Cincu, C. (2015). Bioethanol used in аlkylation of benzene over modified ZSM-5 catalysts with Nd and Pr. Chemical Sciences Journal, 6(2), 96–99. DOI: 10.4172/2150-3494.100096
  25. Gao, J., Lidong, Zh., Hu, J., Li, W., Wang, J. (2009). Effect of zinc salt on the synthesis of ZSM-5 for alkylation of benzene with ethanol, Catalysis Communications, 10(12), 1615-1619. DOI: 10.1016/j.catcom.2009.04.029
  26. Mamedov, S.E., Iskenderova, A.A., Akhmedova, N.F., Mamedov, E.S. (2020). The Influence of Modification on the Properties of High-Silica TsVM Zeolite in the Benzene Alkylation Reaction with Ethanol. Petroleum Chemistry, 60, 950-956. DOI: 10.1134/S0965544120080071
  27. Ding, W., Cui, Y., Li, J., Yang, Y., Fang, W. (2014). Promoting effect of dual modification of H-ZSM-5 catalyst by alkali treating and Mg doping on catalytic performances for alkylation of benzene with ethanol to ethylbenzene. RSC Advances. 4(91), 50123-50129. DOI: 10.1039/C4RA07918C
  28. Emana, A.N., Chand, S. (2016). Kinetic study of alkylation of benzene with ethanol over bimetallic modified HZSM-5 zeolite catalyst and effects of percentage metal loading. Сatalysis Structure & Reactivity, 2(1-4), 13-24. DOI: 10.1080/2055074X.2016.1198545
  29. Emana, A.N., Chand, S. (2015). Alkylation of benzene with ethanol over modified HZSM-5 zeolite catalysts. Applied Petrochemical Research, 5, 121–134. DOI: 10.1007/s13203-015-0100-7
  30. Hosseinpour, M., Amiri, H., Ahmadi, S.J., Mousavian, M.A. (2016). The role of supercritical water on the rapid formation of ZSM-5 nanocatalyst. The Journal of Supercritical Fluids, 107, 479-485. DOI: 10.1016/j.supflu.2015.06.013
  31. Kostyniuk, A., Key, D., Mdleleni, M. (2019) Effect of Fe-Mo promoters on HZSM-5 zeolite catalyst for 1-hexene aromatization. Journal of Saudi Chemical Society. DOI: 10.1016/j.jscs.2018.11.001
  32. Wang, D., Wang, C.M., Yang, G., Du, Y.J., Yang, W.M. (2019). First-principles kinetic study on benzene alkylation with ethanol vs. ethylene in H-ZSM-5. Journal of Catalysis, 374, 1-11. DOI: 10.1016/j.jcat.2019.04.021
  33. Odedairo, T., Al-Khattaf, S. (2010). Kinetic analysis of benzene ethylation over ZSM-5 based catalyst in a fluidized-bed reactor. Chemical Engineering Journal, 157(1), 204-215. DOI: 10.1016/j.cej.2009.12.009
  34. Rahmani, E., Rahmani, M. (2020). Catalytic process modeling and sensitivity analysis of alkylation of benzene with ethanol over MIL-101(Fe) and MIL-88(Fe). Frontiers of Chemical Science and Engineering, 14, 1100–1111. DOI: 10.1007/s11705-019-1891-3

Last update:

No citation recorded.

Last update:

No citation recorded.