skip to main content

Catalytic Performance of Environmentally Friendly Calcium Sulfate Hemihydrate-supported Metals (Ti, Fe, Cu or Ag) for Oxidation Styrene to Benzaldehyde

1Department of Chemical Education, Universitas Mulawarman, Kampus Gunung Kelua, Samarinda, 75119, East Kalimantan, Indonesia

2Department of Chemistry, Universitas Mulawarman, Kampus Gunung Kelua, Samarinda, 75119, East Kalimantan, Indonesia

3Department of Chemical Engineering, Universitas Mulawarman, Kampus Gunung Kelua, Samarinda, 75119, East Kalimantan, Indonesia

4 School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia

5 Department of Chemistry, Universitas Negeri Malang, Malang 65145, Indonesia

6 Center of Advanced Materials for Renewable Energy (CAMRY), Universitas Negeri Malang, Jl. Semarang No. 5, Malang 65145, Indonesia

View all affiliations
Received: 6 Oct 2025; Revised: 5 Jan 2026; Accepted: 7 Jan 2026; Available online: 13 Jan 2026; Published: 30 Apr 2026.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2026 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

This paper presents the synthesis and characterization of calcium sulfate hemihydrate (CSH)-supported Metals (Ti, Fe, Cu or Ag) catalysts and their application in the styrene oxidation to benzaldehyde using hydrogen peroxide (H2O2) as an oxidant. The study explores the catalyst's structure-activity relationship, emphasizing the importance of mesoporous materials for enhanced catalytic performance. The CSH-Metals catalysts were synthesized using fish bone-derived CSH as a support, which aligns with green chemistry principles. Characterization techniques, such as FTIR, XRD, SEM, and BET surface area analysis, confirmed the successful impregnation of Metals (Ti, Fe, Cu or Ag) and its catalytic performance. The catalysts exhibited styrene conversion and high selectivity for benzaldehyde, achieving up to 49.5% and 60.2% for CSH-Ti; 12.9% and 84.1% for CSH-Fe, 19.9% and 61.5% for CSH-Cu, and 13.4% and 92.8% for CSH-Ag. The research highlights that the best catalyst’s performance are CSH-Ti for styrene conversion and CSH-Ag for benzaldehyde selectivity. To support performance interpretation, a fuzzy logic analysis was applied to evaluate the influence of seven key parameters on catalytic behavior. The results revealed that ROS (Reactive Oxygen Species) formation activity, type of metal, and metal–intermediate interaction were the most dominant factors affecting performance. This data-driven insight reinforces the chemical reactivity as the primary determinant of catalyst effectiveness, above physical attributes such as surface area or pore structure. Overall, this study introduces a cost-effective, sustainable, and selective catalyst system for styrene oxidation, demonstrating high potential for industrial application in the production of value-added chemicals with minimal environmental impact. Copyright © 2026 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Supporting Information (SI) PDF
Keywords: CSH-Metals;styrene oxidation; benzaldehyde;green chemistry; hydrogen peroxide; mesoporous materials
Funding: Ministry of Higher Education, Science and Technology Republic of Indonesia under contract 554/UN17.L1/HK/2025

Article Metrics:

  1. Xie, L., Wang, H., Lu, B., Zhao, J., Cai, Q. (2018). Highly selective oxidation of styrene to benzaldehyde over Fe3O4 using H2O2 aqueous solution as oxidant. React. Kinet. Mechan. Catal. 125(2), 743–756. DOI: 10.1007/s11144-018-1429-6
  2. Aberkouks, A., Mekkaoui, A.A., Boualy, B., Houssame, S.E., Ali, M.A., Firdoussi, L.E. (2018). Selective Oxidation of Styrene to Benzaldehyde by Co-Ag Codoped ZnO Catalyst and H2O2 as Oxidant. Adv. Mater. Sci. Eng. 1-7. DOI: 10.1155/2018/2716435
  3. Qi, B., Lu, X.H., Zhou, D., Xia, Q.H., Tang, Z.R., Fang, S.Y., Pang, T., Dong, Y.L., (2010). Catalytic epoxidation of alkenes with 30% H2O2 over Mn2+-exchanged zeolites. J. Mol. Catal. A: Chem., 322(1–2), 73-79. DOI: 10.1016/j.molcata.2010.02.019
  4. Zhan, W., Guo, Y., Wang, Y., Guo, Y., Liu, Y.X., Wang, Y., Zhang, Z., Lu, G. (2009), Study of Higher Selectivity to Styrene Oxide in the Epoxidation of Styrene with Hydrogen Peroxide over La-Doped MCM-48 Catalyst. J. Phys. Chem. C, 113(17), 7181-7185. DOI: 10.1021/jp8101095
  5. Pierella, L.B., Saux, C., Caglieri, S.C., Bertorello, Hc.R., Bercoff, P.G. (2008) Catalytic activity and magnetic properties of Co–ZSM-5 zeolites prepared by different methods. Appl. Catal. A: Gen. 347, 55–61. DOI: 10.1016/j.apcata.2008.05.033
  6. Zhu, X., Shen, R., Zhang, L. (2014) Catalytic oxidation of styrene to benzaldehyde over a copper Schiff-base/SBA-15 catalyst. Chinese J. Catal. 35, 1716–1726. DOI: 10.1016/S1872-2067(14)60131-5
  7. Koesnarpadi, S., Wirawan, T., Nurhadi, M., Wirhanudin, W., Prananto, Y.P., Nazarudin, N., Volkan Degirmenci, V., Lai, S.Y., Nur, H. (2024) Oxidation of Styrene to Benzaldehyde Using Environmentally Friendly Calcium Sulfate Hemihydrate-Supported Titania Catalysts. Bull. Chem. React. Eng. Catal., 19(4), 622-634. DOI: 10.9767/bcrec.20224
  8. World Health Organization (WHO). (2020). Styrene. In: Some industrial chemicals. Geneva: World Health Organization
  9. Fan, G., Zhu, B., Lei, Y., Zhang, Z., Ma, J., Chen, Y. (2026). Biomass-based styrene production: Process design, techno-economic analysis and life cycle assessment. Chem. Eng. Sci., 320(A), 122460. DOI: 10.1016/j.ces.2025.122460
  10. Xie, L., Wang, H., Lu, B., Zhao, J., Cai, Q. (2018). Highly selective oxidation of styrene to benzaldehyde over Fe3O4 using H2O2 aqueous solution as oxidant. React. Kinet., Mechan. Catal.. 125(2), 743-756. DOI: 10.1007/s11144-018-1429-6
  11. Nurhadi, M., Kusumawardani, R., Wirawan, T., Sumari, S., Yuan, L.S., Nur, H., (2021) Catalytic Performance of TiO2–Carbon Mesoporous_Derived from Fish Bones in Styrene Oxidation with Aqueous Hydrogen Peroxide as an Oxidant. Bull. Chem. React. Eng. Catal., 16(1), 88-96. DOI: 10.9767/bcrec.16.1.9729.88-96
  12. Liu, L., He, W., Fang, Z., Yang, Z., Guo, K., Wang, Z. (2020), From Core−Shell to Yolk−Shell: Improved Catalytic Performance toward CoFe2O4@ Hollow@ Mesoporous TiO2 toward Selective Oxidation of Styrene. Indust. Eng. Chem. Res., 59(45), 19938–19951. DOI: 10.1021/acs.iecr.0c03884
  13. Sakthivel, B., Josephine, D.S.R., Sethuraman, K., Dhakshinamoorthy, A. (2018). Oxidation of styrene using TiO2-graphene oxide composite as solid heterogeneous catalyst with hydroperoxide as oxidant. Catal. Commun., 108, 41-45. DOI: 10.1016/j.catcom.2018.01.029
  14. Milovac, D., Weigand, I., Kovaˇci´c, M., Ivankovi´c, M., Ivankovi´c, H. (2018). Highly porous hydroxyapatite derived from cuttlefish bone as TiO2 catalyst support. Proc. Appl. Ceramics, 12(2), 136-142. DOI: 10.2298/PAC1802136M
  15. Gawande, M.B., Bonifácio, V.D.B., Luque, R., Branco, P.S., Varma, R.S. (2013) Benign by design: catalyst-free in-water, on-water green chemical methodologies in organic synthesis. Chem. Soc. Rev., 42, 5522-5551. DOI: 10.1039/C3CS60025D
  16. Ghuo, Z., Luo, B., Zhang, Q., Deng, W., Wang, Y., Yang, Y. (2014). Recent advances in heterogeneous selective oxidation catalysis for sustainable chemistry. Chem. Soc. Rev., 43, 3480–3524. DOI: 10.1039/C3CS60282F
  17. Pan, Y., Shen, X., Yao, L., Bentalib, A., Peng, Z. (2018). Active site in heterogeneous catalytic reaction on metal and metal oxides: Theory and Practices. Catalysts, 8(10), 478. DOI: 10.3390/catal8100478
  18. Lin, P., Zhao, F., Ren, X., Lu, Y., Dong, X., Gao, L., Ma, T., Bao, J., Liu, A. (2024). Recent progress on Ti-based catalysts in the electrochemical synthesis of ammonia. Nanoscale, 16, 17300–17323. DOI: 10.1039/D4NR02852J
  19. Liu, S., Gao, J., Xu, W., Ji, Y., Zhu, T., Xu, G., Zhong, Z., Su, F. (2024). Transition metal-based catalysts for selective catalytic reduction of NO by CO: A state-of-the-art review. Chem. Eng. J., 486, 150285. DOI: 10.1016/j.cej.2024.150285
  20. Lee, H., Wu, X., Sun, L. (2019) Copper-based homogeneous and heterogeneous catalysts for electrochemical water oxidation. Nanoscale, 12, 4187–4218. DOI: 10.1039/C9NR10437B
  21. Wen, C., Yin, A., Dai, W.L. (2014). Recent advances in silver-based heterogeneous catalysts for green chemistry processes. Applied Catalysis B: Environmental, 160-161, 730–741. DOI: 10.1016/j.apcatb.2014.06.016
  22. Chen, Y., Li, B., Xu, Y., Deng, L., Li, N., Peng, W. (2026). Quantitative description of structure-activity relationship for metal oxide catalysts in Fenton-Like reactions. Chem. Eng. Sci., 321, 122865. DOI: 10.1016/j.ces.2025.122865
  23. Nilsson, A., Pettersson, L.G.M., Hammer, B., Bligaard, T., Nørskov, J.K., Christensen, C.K. (2005). The electronic structure effect in heterogeneous catalysis. Catal. Lett., 100, 111–114. DOI: 10.1007/s10562-004-3434-9
  24. Chen, J., Zhang, Y., Zhang, Z., Hou, D., Bai, F., Han, Y., Zhang, C., Zhang, Y., Hu, J. (2023). Metal–support interactions for heterogeneous catalysis: mechanism, characterization techniques an applications. J. Mater. Chem A., 11, 8540-8572. DOI: 10.1039/D2TA10036C
  25. Ito, S., Kon, Y., Nakashima, T., Hong, D., Ino, D., Sato, K. (2019) Titania-Catalyzed H2O2 Thermal Oxidation of styrenes to Aldehydes. Mol. 24, 1-9. DOI: 10.3390/molecules24142520
  26. Zhang, L.-X., Hua, Z.-L., Dong, X.-P., Li, L., Chen, H.-R., Shi, J.-L. (2007) Preparation of highly ordered Fe-SBA-15 by physical-vapor-infiltration and their application to liquid phase selective oxidation of styrene. J. Mol. Catal. A: Chem. 268, 155-162. DOI: 10.1016/j.molcata.2006.12.027
  27. Tong, J., Li, W., Wang, H., Hu, Y., Zhang, Z., Mahboo, A. (2016) Selective oxidation of styrene catalyzed by cerium-doped cobalt ferrite nanocrystals with greatly enhanced catalytic performance. J. Catal. 344, 474-481. DOI: 10.1016/j.jcat.2016.10.003
  28. Ghosh, S., Acharyya, S.S., Kumar, M., Bal, R. (2015). One-pot preparation of nanocrystalline Ag/WO3 catalyst for the selective oxidation of styrene. Royal Soc. Chem. Adv.. 5(47), 37610-37616. DOI: 10.1039/C5RA03803K
  29. Zhang, Y., Wang, H., Li, S., Lu, B., Zhao, J., Cai, Q. (2021). Catalytic oxidation of styrene and its reaction mechanism consideration over bimetal modified phosphotungstates. Mol. Catal. 515, 111940. DOI: 10.1016/j.mcat.2021.111940
  30. Zhang, D.-H., Li, H.-B., Li, G.-D., Chen, J.-S. (2009). Magnetically recyclable Ag-ferrite catalysts: general synthesis and support effects in the epoxidation of styrene. Dalton Trans.. 47, 10527-10533. DOI: 10.1039/b915232f
  31. Zou, H., Xiao, G., Chen, K., Peng, X. (2018). Noble metal free V2O5/g-C3N4 composite for selective oxidation of olefins using hydrogen peroxide as oxidant. Dalton Trans. 10, 1039-1047. DOI: 10.1039/C8DT02765J
  32. Wang, H., Qian, W., Chen, J., Wu, Y., Xu, X., Wang, J., Kong, Y. (2014). Spherical V-MCM-48: the synthesis, characterization and catalytic performance in styrene oxidation. Royal Soc. Chem. Adv. 4, 50832–50839. DOI: 10.1039/c4ra08333d
  33. Wan, Y., Liang, Q., Li, Z., Xu, S., Hu, X., Liu, Q., Lu, D. (2015). Significant improvement of styrene oxidation over zincphthalocyanine supported on multi-walled carbon nanotubes. J. Mol. Catal. A: Chem. 402, 29-36. DOI: 10.1016/j.molcata.2015.03.010
  34. Ramanathan, R., Sugunan, S. (2007). Styrene oxidation by H2O2 using Ni–Gd ferrites prepared by co-precipitation method. Catal. Commun. 8, 1521–1526. DOI: 10.1016/j.catcom.2006.12.021
  35. Tanglumlert, W., Imae, T., White, T. J., Wongkasemjit, S. (2009). Styrene oxidation with H2O2 over Fe- and Ti-SBA-1 mesoporous silica. Catal. Commun. 10, 1070-1073. DOI: 10.1016/j.catcom.2009.01.002
  36. Thao, N.T., Trung, H.H. (2014). Selective oxidation of styrene over Mg–Co–Al hydrotalcite like-catalysts using air as oxidant Catal. Commun. 45, 153-157. DOI: 10.1016/j.catcom.2013.11.004
  37. Cai, X., Wang, H., Zhang, Q., Tong, J. (2014). Selective oxidation of styrene efficiently catalyzed by spinel Mg–Cu ferrite complex oxides in water. J. Sol-Gel Sci. Technol., 69, 33-39. DOI: 10.1007/s10971-013-3181-8
  38. Jiang, T., Gao, G., Yang, C., Mao, Y., Fang, M., Zhao, Q. (2020). Catalytic Activity of Ag-Co-MCM-41 for Liquid-Phase Selective Oxidation of Styrene to Benzaldehyde. J. Nanosci. Nanotechnol. 20, 1670–1677. DOI: 10.1166/jnn.2020.17137
  39. Sun, W., Hu, J. (2016). Oxidation of styrene to benzaldehyde with hydrogen peroxide in the presence of catalysts obtained by the immobilization of H3PW12O40 on SBA-15 mesoporous material. React. Kin. Mechan. Catal., 119(1), 305-318. DOI: 10.1007/s11144-016-1024-7
  40. Wirawan, T., Nurhadi, M., Rahmadani, A., Prananto, Y.P., Zhu, Z., Lai, S.Y., Nur, H. (2023). One Pot Synthesis of Calcium Sulfate Hemihydrate from Fishbone-derived Carbon(Article). Bull. Chem. React. Eng. Catal., 18(3), 398-406. DOI: 10.9767/bcrec.19515
  41. Nguyen, T.T.V., Anh, N.V., Ho, T.G.T., Pham, T.T.P., Nguyen, P.H.D., Do, B.L., Huynh, H.K.P., Nguyen, T. (2022). Hydroxyapatite Derived from Salmon Bone As Green Ecoefficient Support for Ceria-Doped Nickel Catalyst for CO2 Methanation. ACS Omega, 7(41), 36623-36633. DOI: 10.1021/acsomega.2c04621
  42. Borciani, G., Fischetti, T., Ciapetti, G., Montesiss,a M., Baldini, N., Graziani, G. (2023). Marine biological waste as a source of hydroxyapatite for bone tissue engineering applications. Ceram. Int., 49(2), 1572-1584. DOI: 10.1016/j.ceramint.2022.10.341
  43. Tran, N.D.T., Che, T.N.H., Nguyen, T.T.V., Do, B.L., Ho, T.G.T., Nguyen, P.A., Pham, T.T.P., Tri, N., Ha, H.K.P. (2023). Fishbone derived-hydroxyapatite supported Ni-Zr nanocatalyst for CO2 methanation: Synergistic effects of support and zirconia. Arab. J. Chem., 16(2), 105307. DOI: 10.1016/j.arabjc.2023.105307
  44. Sulaiman, S., Jamaludin, N.F,A., Kabbashi, N.A. (2019). Development of CaO/PVA Catalyst from Fish Bone for Biodiesel Production. Bull. Chem. React. Eng. Catal., 14(1), 153-157. DOI: 10.9767/bcrec.14.1.3327.153-157
  45. Kusumawardani, R., Nurhadi, M., Wirawan, T., Prasetyo, A., Agusti, N.N., Lai, S.Y., Nur, H. (2022). Kinetic Study of Styrene Oxidation over Titania Catalyst Supported on Sulfonated Fish Bone-derived Carbon. Bull. Chem. React. Eng. Catal. 17(1), 194-204. DOI: 10.9767/bcrec.17.1.13133.194-204
  46. Liu, C., Zhao, Q., Wang, Y., Shi, P., Jiang, M. (2016). Surface modification of calcium sulfate whisker prepared from flue gas desulfurization gypsum. Appl. Surface Sci., 360, 263-269. DOI: 10.1016/j.apsusc.2015.11.032
  47. Feng, X., Zhang, Y., Wang, G., Miao, M., Shi, L. (2015). Dual-surface modification of calcium sulfate whisker with sodium hexametaphosphate/silica and use as new water-resistant reinforcing fillers in papermaking. Powder Technol., 271, 1-6. DOI: 10.1016/j.powtec.2014.11.015
  48. Dang, L., Nai, X., Zhu, D., Jing, Y., Liu, X., Dong, Y., Li, W. (2014). Study on the mechanism of surface modification of magnesium oxysulfate whisker. Appl. Surface Sci. 317, 325-331. DOI: 10.1016/j.apsusc.2014.07.205
  49. Duprey, E., Beaunier, P., Springuel-Huet, M.A., Bozon-Verduraz, F., Fraissard, J., Manoli, J.M, Brégeault, J.M. (1997). Characterization of Catalysts Based on Titanium Silicalite, TS-1, by Physicochemical Techniques. J. Catal., 165(1), 22-32. DOI: 10.1006/jcat.1997.1462
  50. Liu, C., Huang, J., Sun, D., Zhou, Y., Jing, X., Du, M., Wang, H., Li, Q. (2013). Anatase type extra-framework titanium in TS-1: A vital factor influencing the catalytic activity toward styrene epoxidation. Appl. Catal. A: Gen., 459, 1-7. DOI: 10.1016/j.apcata.2013.03.013
  51. Nur, H. (2006). Modification of titanium surface species of titania by attachment of silica nanoparticles. Mater. Sci. Eng. B. 133, 49-54. DOI: 10.1016/j.mseb.2006.05.003
  52. Nurhadi, M., Efendi, J., Lee, S.L., Mahlia, T.M.I., Chandren, S., Ho, C.S., Nur, H. (2015). Utilization of low rank coal as oxidation catalyst by controllable removal of its carbonaceous component. J. Taiwan Inst. Chem. Eng. 46(0), 183-190. DOI: 10.1016/j.jtice.2014.09.012
  53. Nurhadi, M., Kusumawardani, R., Wirawan, T., Lai, S.Y, Nur, H. (2023). Synergistic Ti-Fe Oxides on Fishbone-Derived Carbon Sulfonate: Enhanced Styrene Oxidation Catalysis. Ind. J. Chem. 23(6), 1514-1524. DOI: 10.22146/ijc.80667
  54. Lubis, S., Yuliati, L., Lee, S.L., Sumpono, I., Nur, H. (2012) Improvement of catalytic activity in styrene oxidation of carbon-coated titania by formation of porous carbon layer. Chem. Eng. J. 209, 468-493. DOI; 10.1016/j.cej.2012.08.041
  55. Indira, V., Halligudi, S.B., Gopinathan, S., Gopinathan, C. (2001). Kinetics and Mechanism of Styrene Oxidation Using Transition Metal Substituted Dodecatungstophosphate. React. Kinet. Catal. Lett. 73(1), 99-107. DOI: 10.1023/A:1013985123468

Last update:

No citation recorded.

Last update:

No citation recorded.