1Department of Chemical Education, Universitas Mulawarman, Kampus Gunung Kelua, Samarinda, 75119, East Kalimantan, Indonesia
2Department of Chemistry, Universitas Mulawarman, Kampus Gunung Kelua, Samarinda, 75119, East Kalimantan, Indonesia
3Department of Chemical Engineering, Universitas Mulawarman, Kampus Gunung Kelua, Samarinda, 75119, East Kalimantan, Indonesia
4 School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia
5 Department of Chemistry, Universitas Negeri Malang, Malang 65145, Indonesia
6 Center of Advanced Materials for Renewable Energy (CAMRY), Universitas Negeri Malang, Jl. Semarang No. 5, Malang 65145, Indonesia
BibTex Citation Data :
@article{BCREC20508, author = {Agung Rahmadani and Mukhamad Nurhadi and Teguh Wirawan and Wirhanuddin Wirhanuddin and Nabila Nur Agusti and Sin Yuan Lai and Hadi Nur}, title = {Catalytic Performance of Environmentally Friendly Calcium Sulfate Hemihydrate-supported Metals (Ti, Fe, Cu or Ag) for Oxidation Styrene to Benzaldehyde}, journal = {Bulletin of Chemical Reaction Engineering & Catalysis}, volume = {21}, number = {1}, year = {2026}, keywords = {CSH-Metals;styrene oxidation; benzaldehyde;green chemistry; hydrogen peroxide; mesoporous materials}, abstract = { This paper presents the synthesis and characterization of calcium sulfate hemihydrate (CSH)-supported Metals (Ti, Fe, Cu or Ag) catalysts and their application in the styrene oxidation to benzaldehyde using hydrogen peroxide (H 2 O 2 ) as an oxidant. The study explores the catalyst's structure-activity relationship, emphasizing the importance of mesoporous materials for enhanced catalytic performance. The CSH-Metals catalysts were synthesized using fish bone-derived CSH as a support, which aligns with green chemistry principles. Characterization techniques, such as FTIR, XRD, SEM, and BET surface area analysis, confirmed the successful impregnation of Metals (Ti, Fe, Cu or Ag) and its catalytic performance. The catalysts exhibited styrene conversion and high selectivity for benzaldehyde, achieving up to 49.5% and 60.2% for CSH-Ti; 12.9% and 84.1% for CSH-Fe, 19.9% and 61.5% for CSH-Cu, and 13.4% and 92.8% for CSH-Ag. The research highlights that the best catalyst’s performance are CSH-Ti for styrene conversion and CSH-Ag for benzaldehyde selectivity. To support performance interpretation, a fuzzy logic analysis was applied to evaluate the influence of seven key parameters on catalytic behavior. The results revealed that ROS (Reactive Oxygen Species) formation activity, type of metal, and metal–intermediate interaction were the most dominant factors affecting performance. This data-driven insight reinforces the chemical reactivity as the primary determinant of catalyst effectiveness, above physical attributes such as surface area or pore structure. Overall, this study introduces a cost-effective, sustainable, and selective catalyst system for styrene oxidation, demonstrating high potential for industrial application in the production of value-added chemicals with minimal environmental impact. Copyright © 2026 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License ( https://creativecommons.org/licenses/by-sa/4.0 ). }, issn = {1978-2993}, pages = {168--179} doi = {10.9767/bcrec.20508}, url = {https://journal.bcrec.id/index.php/bcrec/article/view/20508} }
Refworks Citation Data :
This paper presents the synthesis and characterization of calcium sulfate hemihydrate (CSH)-supported Metals (Ti, Fe, Cu or Ag) catalysts and their application in the styrene oxidation to benzaldehyde using hydrogen peroxide (H2O2) as an oxidant. The study explores the catalyst's structure-activity relationship, emphasizing the importance of mesoporous materials for enhanced catalytic performance. The CSH-Metals catalysts were synthesized using fish bone-derived CSH as a support, which aligns with green chemistry principles. Characterization techniques, such as FTIR, XRD, SEM, and BET surface area analysis, confirmed the successful impregnation of Metals (Ti, Fe, Cu or Ag) and its catalytic performance. The catalysts exhibited styrene conversion and high selectivity for benzaldehyde, achieving up to 49.5% and 60.2% for CSH-Ti; 12.9% and 84.1% for CSH-Fe, 19.9% and 61.5% for CSH-Cu, and 13.4% and 92.8% for CSH-Ag. The research highlights that the best catalyst’s performance are CSH-Ti for styrene conversion and CSH-Ag for benzaldehyde selectivity. To support performance interpretation, a fuzzy logic analysis was applied to evaluate the influence of seven key parameters on catalytic behavior. The results revealed that ROS (Reactive Oxygen Species) formation activity, type of metal, and metal–intermediate interaction were the most dominant factors affecting performance. This data-driven insight reinforces the chemical reactivity as the primary determinant of catalyst effectiveness, above physical attributes such as surface area or pore structure. Overall, this study introduces a cost-effective, sustainable, and selective catalyst system for styrene oxidation, demonstrating high potential for industrial application in the production of value-added chemicals with minimal environmental impact. Copyright © 2026 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Article Metrics:
Last update:
In order for Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group to publish and disseminate research articles, we need non-exclusive publishing rights (transfered from author(s) to publisher). This is determined by a publishing agreement between the Author(s) and Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group. This agreement deals with the transfer or license of the right for publishing to Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group, while Authors still retain significant all copy rights to use and share their own published articles. Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group supports the need for authors to share, disseminate and maximize the impact of their research and these rights, in any databases.
As a journal Author, you have all copy rights for a large range of uses of your article, including use by your employing institute or company. These Author copy rights can be exercised without the need to obtain specific permission. Authors who publishing in BCREC journals have wide copy rights to use their works for teaching and scholarly purposes without needing to seek permission, including, but not limited to:
Authors/Readers/Third Parties can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (the name of the creator and attribution parties (authors detail information), a copyright notice, an open access license notice, a disclaimer notice, and a link to the material), provide a link to the license, and indicate if changes were made (Publisher indicates the modification of the material (if any) and retain an indication of previous modifications using a CrossMark Policy and information about Erratum-Corrigendum notification).
Authors/Readers/Third Parties can read, print and download, redistribute or republish the article (e.g. display in a repository), translate the article, download for text and data mining purposes, reuse portions or extracts from the article in other works, sell or re-use for commercial purposes, remix, transform, or build upon the material, they must distribute their contributions under the same license as the original Creative Commons Attribution-ShareAlike (CC BY-SA).
The Authors submitting a manuscript do so on the understanding that if accepted for publication, non-exclusive right for publishing (publishing right) of the article shall be assigned/transferred to Publisher of Bulletin of Chemical Reaction Engineering & Catalysis journal (Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group).
Upon acceptance of an article, authors will be asked to complete a 'Right Transfer Agreement for Publishing (RTAP)'. An e-mail will be sent to the Corresponding Author confirming receipt of the manuscript together with a 'Right Transfer Agreement for Publishing' form by online version of this agreement.
Bulletin of Chemical Reaction Engineering & Catalysis journal and Masyarakat Katalis Indonesia-Indonesian Catalyst Society (MKICS), the Editors and the Advisory International Editorial Board make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in the Bulletin of Chemical Reaction Engineering & Catalysis are sole and exclusive responsibility of their respective authors and advertisers.
Remember, even though we ask for a transfer of right for publishing (RTAP), our journal Author(s) still retain (or are granted back) significant scholarly copy rights as mentioned before.
The Right Transfer Agreement for Publishing (RTAP) Form can be downloaded here: [Right Transfer Agreement for Publishing (RTAP) Form BCREC 2025]
The copyright form should be signed electronically and send to the Editorial Office in the form of original e-mail below: Prof. Dr. I. Istadi (Editor-in-Chief)Editorial Office of Bulletin of Chemical Reaction Engineering & CatalysisLaboratory of Plasma-Catalysis (R3.5), UPT Laboratorium Terpadu, Universitas DiponegoroJl. Prof. Soedarto, Semarang, Central Java, Indonesia 50275Telp/Whatsapp: +62-81-316426342E-mail: bcrec[at]live.undip.ac.id ; bcrec[at]che.undip.ac.id
(This policy statements has been updated at 24th January 2024)