Available online at website: https://journal.bcrec.id/index.php/berec

Bulletin of Chemical Reaction Engineering & Catalysis, 21 (1) 2026, 68-79

=]
o
=
==
[}

PUBLISHING GROUP

Original Research Article

Nickel-Lanthanum Impregnated into Natural Zeolite as a Catalyst
for Biofuel Production from Sunflower Oil via Hydrocracking
Process

Erik Budi Santikol, Sarah Fauziah?, Sugeng Priyanto3, Y. Yustinah?2, Lenny Marlinda*,
S. Sudibyo’, Abdul Azizé, Peri Oktiarmi?, Indri Yati!, Muhammad Al Muttaqiil*

1Research Center for Catalysis, National Research and Innovation Agency, South Tangerang 15314, Indonesia.
2Department of Chemical Engineering, University of Muhammadiyah Jakarta, Central Jakarta 10510, Indonesia.
3Department of Mechanical Engineering, State University of Jakarta, East Jakarta 13220, Indonesia.
1Department of Industrial Chemistry, Faculty of Science and Technology, University of Jambi. Jambi, Indonesia.
5Research Center for Mining Technology, National Research and Innovation Agency (BRIN-Indonesia), South Lampung 35361,
Indonesia.
6Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Keputih, Sukolilo, Surabaya
60111, Indonesia.
"Department of Chemistry, Jambi State Senior High School 3, Jambi, 36124, Indonesia.

Received: It October 2025; Revised: 30th November 2025, Accepted: 15t December 2025 m

Available online: 24th December 2025; Published regularly: April 2026 R

updates

Abstract

The increasing demand for crude oil or fossil fuel as a raw material for oil fuel has been steadily rising over time in line
with the development that is taking place in Indonesia. However, biofuels are potential vegetable fuels that can be
developed as alternative energy because they are renewable and can be renewed to overcome the energy crisis in the
future. For this purpose, a double metal catalyst (impregnated with nickel and lanthanum), is used to make biofuels
from sunflower seed oil. The effect of metal ratio on the yield of biofuel products is the concern in this study. The
temperature of hydrocracking process was 250-330 °C with ratio of metal 5% and 10% (metal ratio 1:1 and 1:2). X-ray
diffraction (XRD) shows that natural zeolite has a clinoptilolite phase, X-Ray Fluorescence (XRF) shows that acid and
base activation increases the Si/Al ratio from 4.5 to 5, Scanning Electron Microscope — Energy Dispersive X-Ray (SEM-
EDX) shows images of natural zeolite surfaces in the form of aggregate pieces, and Brunauer Emmett Teller (BET)
shows that acid and base activation increases Sper from 29.96 to 49.73 m2/g and forms a hierarchical natural zeolite.
The impregnation of Ni-La/Zeolite catalyst has been successfully carried out using the incipient wetness impregnation
method and the best catalyst results were obtained, namely Ni-La/Zeolite 10% (1:2) with a surface area of 15.33 m?2/gS.
The addition of Nickel and Lanthanum metals caused a decrease in the surface area and average pore diameter of the
zeolite. The lowest surface area and average pore diameter were found in the variation of the Ni-La/Zeolite 10% (1:2)
catalyst, namely 15.33 m2/g and 13.99 nm. The highest hydrocarbon yield was found in the hydrocracking process with
the Ni-La/Zeolite 10% (1:1) catalyst with gasoline, kerosene and gasoil fractions of 0.91; 0.39 and 8.32 (%wt),
respectively. The hydrocarbon compound composition of the catalyst includes n-paraffin 4.43%, isoparaffin 0.21%,
cycloparaffin 2.99% and olefin 2.71%.
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1. Introduction The transportation sector is among the highest
consumers of energy across various industries.

As Indonesia continues to grow and develop, Fossil fuel have been used as a main source of
there is a corresponding rise in energy demand. energy for many years, but to fulfill the global
energy demand, we have to get another energy

* Corresponding Author. source that can be better. The use of vegetable oil
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which i1s a renewable energy source expected to
offer solutions to overcome the energy crisis [1].
The burning of the fossil fuels by the
transportation of people can emit gaseous
pollutants such as carbon dioxide, carbon
monoxide, nitrogen oxide, sulfur oxide, volatile
organic compounds, and particulate matter that
can change the composition of the atmosphere [2].
A potential solution is to use renewable sources of
energy, which have the ability to provide energy
with reduced emission of air pollutants [3].

A Dbiofuel is a fuel that is produced from
biological processes or derived from the biomass of
living organisms. Biofuels are arguably a
potential renewable energy source in the
transportation industry [4]. Biofuels contributed
to the reduction of carbon emissions; it is because
biofuels are carbon neutral. Besides that, biofuel
can stabilize the global climate and improve
energy security from use of conventional fossil
fuels [5]. There are four generation categories of
biofuel base on the type of feedstock used to
produce biofuel. First of all is the biofuels that
produced from edible feedstocks such as from
corn, sugar cane and oil seed crops [6]. Second
generation are produced from agricultural by-
products or cellulosic materials such as wood,
leaves and grass [7]. Third-generation are
produced from aquatic cultivated stock such as
algae. And last, the fourth generation are made
from bioengineered microorganisms [8]. One of
the vegetable oils that has a potential is sunflower
oil. The sunflower is not only known as an
ornamental plant but also known as a plant that
produces oils [9]. The use of sunflower oil is still
limited, especially in Indonesia. Sunflower oil
mostly contains linoleic acid and oleic acid. The
benefits of this oil are still not optimal. Sunflower
oil consists of the same elements as other
vegetable oils, such as carbon, hydrogen, and
oxygen [10].

Zeolite is one of the non-metallic mineral
commodities that have the potential to be
catalysts in a cracking reaction. Zeolite is a metal
support catalyst. The surface characteristics of
zeolite can be changed by a modification with an
acid process to clean the pores of adsorbed metals
[11]. Lampung natural zeolite has good potential
because it contains SiO2, Al20s, and several
metals that are useful as catalysts [12,13]. With
the addition of a metal component in the zeolite
pore, it is expected to be able to make a high-
quality hydrocarbon in biofuel. Nickel has been
widely used as a catalyst before. It can give a
positive contribution for cracking activity [14].
Several previous studies have conducted metal
impregnation on natural zeolite. Such as the
study by Kurniawan et al. [15] who conducted Ni
and Mo impregnation on natural zeolite for the
conversion of used cooking oil into biofuel. In

addition, there is a study conducted by Sihombing
et al. [16], conducting Co and Mo impregnation on
natural zeolite for the conversion of rubber seed
oil into gasoline fractions. Several other studies
have also conducted metal impregnation, such as
Ni, Zn, Cu, and La on natural zeolite [17,18].
However, no one has combined Ni and La on
natural zeolite for the hydrocracking reaction of
sunflower oil. In the presence of a second metal, it
1s expected to be better. Therefore, nickel and
lanthanum are combined for this study with
zeolite [19].

Istadi et al. [20] reported that Co metal
chemically doped on Ni/ZSM-5 -catalyst for
cracking palm oil has the highest conversion with
3Co-N1/ZSM-5 to produce gasoline, kerosene, and
diesel with yields of 2.61%, 4.38%, and 61.75%,
respectively. Kurniawan et al. [15] also reported
using NiMo/y-Al2Os-zeolite catalyst with alumina-
to-zeolite ratios of 75:25 and 25:75, effectively
converting used cooking oil into bio-hydrocarbon
products—green diesel and gasoline. Allwar et al.
[21] also reported using NiO-CdO/biochar catalyst
with hydrocracking of crude palm oil (CPO) has
produced more liquid product than thermal
cracking, at 56.55 wt%, 20.55 wt%, respectively.

Biofuel products from sunflower oil can be
obtained through a process that cracks long-chain
hydrocarbons into short-chain hydrocarbons. The
method can be divided into three types: thermal
cracking, catalytic cracking, and hydrocracking.
Hydrocracking is a method that can convert
vegetable oils to biofuel with the addition of a
catalyst and hydrogen. Hydrocracking has several
advantages, such as providing high conversions,
high yields towards middle distillate, and
producing alkanes with good quality [22]. Biofuel
can be the energy that is environmentally
friendly. To get the high yield of biofuel, it is
usually influenced by several aspects, such as
temperature reaction, time of cracking, weight of
catalyst, and the type of catalyst [23]. Therefore,
this study conducted acid and base pretreatment
on natural zeolite. Then, Ni-La metal
impregnation with varying metal ratios and metal
loadings on natural zeolite was carried out,
followed by sunflower oil hydrocracking reaction
at varying reaction temperatures.

2. Materials and Methods
2.1 Materials

This study were used sunflower oil (from local
market), natural zeolite from Lampung, nickel (IT)
nitrate hexahydrate (N1(NOs3)2.6H=0),
lanthanum(I1I) nitrate hexahydrate
(La(NO3)2.6H20) were purchased from Merck with
purity =99%.
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2.2 Preparation and Catalyst Characterizations

Natural zeolite was prepared through
sequential acid and base activation, commonly
referred to as dealumination and desilication. The
zeolite (200 mesh) was first calcined in a muffle
furnace at 500°C for 3h, followed by base
activation using 500 mL of 0.5 M NaOH at 75°C
for 1h. After thorough washing with distilled
water until neutral, the sample was dried in an
oven at 110°C for 24 h and subsequently treated
with 2 M HCI for 2 h. The zeolite was then washed
to a final pH of 5, dried again at 110 °C for 24 h,
and calcined at 500 °C for 3 h under ambient air.
Impregnation was carried out using nickel nitrate
hexahydrate and lanthanum nitrate hexahydrate
with metal ratios of 1:1 and 1:2, and loadings of
5% and 10%. The precursors Ni(NOs), 6H,0O and
La(NO3); 6H,O were dissolved in methanol,
mixed with the zeolite, stirred for 1 h, and aged for
12h. The impregnated samples were dried at
110°C for 12h, followed by calcination in air at
550 °C for 3 h, yielding the final catalyst ready for
use.

The crystallinity of the catalysts was
characterized by X-ray diffraction (XRD) using a
XRD SmartLab Rigaku with Cu-Ka radiation
(1.541862 A) in a 20 range from 5-100°. X-Ray
Fluorosence (XRF) to determine the components
in the catalyst. Scanning Electron Microscope —
Energy Dispersive X-Ray (SEM-EDX) Analysis to
analysis morphology and element composition.
Brunauer Emmett Teller (BET) analysis produces
surface area, pore size, and total pore volume.

2.3 Catalytic Tests

The catalytic tests were carried out using a
batch reactor with four different temperatures
(270, 290, 310, 330) °C (Figure 1). The 1 g of
catalyst was placed in the reactor and 25 mL of
sunflower oil was added. The condition reaction
process at temperature of 270-330 °C with 20 bar

Hydrogen gas

Figure 1. Schematic diagram of hydrocracking
process.

H: gas cylinder pressure for 2 h. After reaching
the variable temperature, the sample is left to cool
to room temperature, then taken and placed in a
sample bottle. The result of biofuel product was
analyzed by GC-MS to determine hydrocarbon
chain from the process. Analyses were performed
using an Agilent gas chromatograph coupled to a
mass selective detector (GC-MS). Separation was
achieved on an Agilent HP-5 MS column (Catalog
19091S-433, 30 m X 0.25 mm X 0.25 pm, 5%
phenyl-methylpolysiloxane). The results of yield
and conversion were calculated based on the
following equations below, where W of liquid
product is the weight of the liquid product (g), W
of sunflower oil is the weight of sunflower oil (g),
W of remaining oil is the weight of the remaining
oil (g), which was the following equation from
Trisunaryanti et al. [24]:

Liquid Product Yield (%) =
.Weight of Liq.Prodzfct % 100% (1)
Weight of Sunflower Oil Feed

Total Conversion (%) =
Weight of Sunflower Oil-Weight of remaining oil
Weight of Sunflower 0il

x 100% (2)

3. Results and Discussion
3.1 Catalyst Characterization

The XRD patterns of Natural zeolite and
modified zeolite shown in Figure 2. The main
peaks of zeolite were observed at 20 of: 9,81°;
19,74°; 21,68° ; 22,37° ; 26,04° ; 28,01°; 30,03° and
31,92°. Then the main peaks of modified zeolite
were observed at 9,87° ; 11,15° ; 20,90° ; 21,84° ;
22,42° ; 23,68° ; 26,09° ; 27,72°. These peaks
indicate the clinoptilolite phase based on JCPDS
card No. 25-1349 [12]. The activation process of
zeolite with acids and bases results in a decrease
in crystallinity as indicated by a decrease in the
intensity of the typical clinoptilolite peaks [25].

s L Modified Zeolite

Intensity (a.u.)

N Ak Natural zeo.llte

10 2 30 40 50 60 70 8 90
26 (°)

Figure 2. XRD pattern for zeolite and modified

zeolite.
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Figure 3 show the patterns of XRD for different
ratio and metal loading amount from Ni-
La/Zeolite 5% (1:1) and Ni-La/Zeolite 5% (1:2). The
pattern with Ni-La/Zeolite 5% (1:1) catalyst
shown La diffraction peaks at 26 =27,73° ; NiO at
20 = 36,48° and Ni at 20 = 50,09° with low
intensity. Then the XRD pattern for Ni-La/Zeolite
5% (1:2) shown the diffraction peak of La at 20 =
27,70° ; NiO at 20 = 42,56 ° and Ni at 20 = 68,33°
with low intensity [14]. It shows that particle of
La and Ni well dispersed on the zeolite [26].
Table 1 shows the result of XRF analysis in
wt% units for zeolite and modified zeolite. It
shows that there is an increase of SiOz on natural
zeolite before the modification process from
72.50% to 75.90% after modification.
Furthermore, there is a decrease of Al2Os from
16.10% to 15.20%. Table 1 and Figure 4 show that
the ratio of Si02/Al203 before modification
increased from 4.5 to 5.0 after modification.
Increasing the ratio of Si/Al can increase the
acidity or acid site on the zeolite, which will
improve the activity of the =zeolite. This is
indicated a reaction of dealumination, with an aim
to optimize aluminum in zeolite to be stable at

4 NiO

% |

Ni-La/Zeolite 10% (1:2)
o

¢ e
" | Ni-La/Zeolite 10% (1:1)
* * . .
JWMM X A | Ni-La/Zeolite 5% (1:2)
.
"™ Ni-La/Zeolite 5% (1:1)
T T T T T T T T
10 20 30 40 50 60 70 80 90
20 (°)

Figure 3. XRD pattern of Ni-La/Zeolite.

Table 1. XRF analysis for catalysts.

high temperatures [27]. Table 1 shows the result
of XRF analysis in wt% units for zeolite that has
impregnated with nickel and lanthanum. The
ratio and % loading were 5% (1:1) and 5% (1:2).
The characterization shows that there was an
addition of nickel and lanthanum for all the
ratios. On a Ni-La/Zeolite 5% (1:1), the
compositions of nickel and lanthanum are 2.60%
and 2.00%. Then, for the catalyst Ni-La/Zeolite
5% (1:2), the compositions of nickel and
lanthanum are 3.90% and 2.70%. Impregnation
was chosen as a dispersion method because it is
an easy process, can be derived from its precursor
salt solution, and is effective for dispersing active

metal [28].
Figure 5 shows the SEM results for all
catalysts. All catalysts have a similar

morphology, resembling irregular aggregates.
However, after modification, the material surface
appears to be fragmented due to activation by
acids and bases. Furthermore, after
impregnation with Ni-La metal, the material has
a more aggregated surface due to the presence of
metal dispersed on the zeolite surface. This
indicates that the metal has been successfully

5.5 5.4

o
1

Si/Al ratio
w0 IS

(3%
1

0 | - i
Natural
Zeolite

T T T T
Ni-La/Zeolite ~Ni-La/Zeolite ~Ni-La/Zeolite Ni-La/Zeolite
5% (1:1) 5% (1:2) 10% (1:1) 10% (1:2)

Catalyst

o T
Modified
Zeolite

Figure 4. Si/Al ratio of the catalysts base on
XRF results.

Catalyst composition (wt.%)

Component . Modified Ni- . Ni- . Ni- . Ni- )
Zeolite Zeolite La/Zeolite La/Zeolite La/Zeolite La/Zeolite
5% (1:1) 5% (1:2) 10% (1:1) 10% (1:2)
Al2O3 16.10 15.20 13.30 13.00 11.10 11.70
CaO 2.50 1.70 1.60 1.60 1.20 1.30
Fe20s 3.10 2.50 1.90 1.90 1.80 1.90
K20 2.30 0.90 1.20 1.20 0.90 0.90
La20s - - 2.30 3.20 5.70 8.30
MgO 2.00 0.80 1.60 1.50 1.40 1.40
NiO - . 3.20 4.90 9.70 6.90
SiO2 72.50 75.90 73.80 71.30 66.60 66.50
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impregnated into the zeolite [29]. Figure 6
displays a mapping image of Ni and La metals in
natural zeolite. The mapping results indicate that
the metals are evenly dispersed on the zeolite
surface, as indicated by the uniform distribution
of colors [30]. Furthermore, EDX also indicates
that Ni-La has been successfully impregnated,
supporting the XRF analysis results.

Figure 7 displays the N2 adsorption-
desorption isotherms of natural zeolite, modified
zeolite, and Ni-La impregnated zeolite. The
isotherms show a hysteresis loop starting at P/P0
= 0.4 to 1.0, which is a type IV isotherm. The
presence of this hysteresis loop indicates the
presence of mesopores (2-50 nm). The hysteresis
loop formed at P/P° to 1.0 indicates the presence
of intra- and interparticle mesopores [31]. While
the isotherm at P/P° between 0-0.4 indicates
micropores in the material. Therefore, it can be
concluded that based on the N2 adsorption-

desorption isotherms, all catalysts have a
hierarchical pore type, namely a combination of
micropores and mesopores [32].

Table 2 shows that natural zeolite after
modification has a larger surface area value of
49.73 m?/g compared to natural zeolite which is
29.96 m?/g. Then after the impregnation process
with nickel and lanthanum metals, the surface
area and pore volume of the catalyst decreased.
The surface area of the Ni-La/matural zeolite
catalyst with 5% and 10% loading with a ratios of
1:1 and 1:2 were 23.69, 15.87, 19.35, and 15.33
m2/g, respectively. The decrease in the surface
area of the catalyst was caused by the filling of the
zeolite micropores-mesopores after the
impregnation process with nickel and lanthanum
metals. Furthermore, the reduced surface area of
the catalyst is due to the metal particles spreading
across the surface and entering the pores of the
natural zeolite, thus reducing the pore volume of

Figure 5. SEM image of Natural Zeolite (a), Modified zeolite (b), Ni-La/Zeolite 5% (1:1) (c), Ni-La/Zeolite
5% (1:2) (d), Ni-La/Zeolite 10% (1:1) (e), and Ni-La/Zeolite 10% (1:2) (f).

(b)

(d)

Figure 6. Metal mapping of the Ni-La/Zeolite 5% (1:1) (a), Ni-La/Zeolite 5% (1:2) (b), Ni-La/Zeolite 10%

(1:1) (c), and Ni-La/Zeolite 10% (1:2) (d).
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the catalyst [33]. This increases the active sites on
the catalyst, which affects the reaction rate during
the process without reducing the effectiveness and
performance of the catalyst [34].

3.2 Catalytic Test

Figure 8 shows the conversion of sunflower oil
in the hydrocracking reaction. The conversion
rates are very high, almost all above 95%. This is
because the reactor used is a batch reactor,
resulting in a very large amount of converted
feedstock. The unconverted residue is likely lost
as gas during the reaction [35]. At a high
temperature of 330 °C, conversion decreases
because more gas is produced, thus reducing
conversion [36]. A higher Si/Al ratio is known to
generate stronger Brensted acidity, which
enhances  cracking, decarboxylation, and
deoxygenation reactions during hydrocracking.
This explains the higher formation of shorter-
chain hydrocarbons and the broader distribution

of gasoline—kerosene—gasoil obtained with the Ni-
La-modified catalysts, compared to natural zeolite
which mainly produced carboxylic acids [37].

[ A2s50°c EA270°c EW290°c L A330°C
100 + — —— s

L D [0}
(=} (=} (=}
1 1 1

Tryglicerides conversion (%)
[
o
1

Ni-La/Zeolite  Ni-La/Zeolite Ni-La/Zeolite Ni-La/Zeolite
5% (1:1) 5% (1:2) 10% (1:1) 10% (1:2)

Catalyst

natural
zeolite

Figure 8. Tryglicerides conversion of the
hydrocracking sunflower oil.

Table 2. BET analysis results of zeolite before and after modification and natural Ni-La/Zeolite

catalyst. at-plot; " BJH

g Pore Average Pore
Catalysts PTG o (m2/g)  Sext? (m2/g) Volumeb Diameter
(m?/g)
(cm3/g) (nm)
Natural zeolite 29.96 1.27 28.69 0.08 11.50
Modified natural zeolite 49.73 11.96 37.76 0.11 8.49
Ni-La/natural zeolite 5% (1:1) 23.69 5.53 18.15 0.08 14.08
Ni-La/natural zeolite 5% (1:2) 15.87 1.09 14.77 0.07 18.48
Ni-La/natural zeolite 10% (1:1) 19.35 3.24 16.10 0.09 18.72
Ni-La/natural zeolite 10% (1:2) 15.33 2.72 12.61 0.05 13.99
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Figure 7. N2 adsorption-desorption isotherm of catalysts.
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The process that has been typically used in
the petroleum refinery plant for a long time to
upgrade and 1improve product quality 1is
hydroprocessing. It is divided into two main
chemical reaction such as hydrotreating and
hydrocracking. Hydrotreating is mainly used for
eliminating heteroatom from crude oil in
petroleum industry and hydrocracking is used to
convert a larger molecule of hydrocarbon
structure into hydrocarbon compounds of lower
molecular weight [38]. Biofuel product from
sunflower oil through hydrocracking with Ni-
La/Zeolite characterized by GC-MS. Hydrocarbon
mixture produced by hydrocracking from

vegetable oil is commonly called green diesel, it
has a high cetane number mostly. The feedstock
of hydrocracking reaction are one of the critical
parameters for sustainable and feasible biofuel
production [39].

The result is that biofuel can be classified into
hydrocarbon compounds such as n-paraffin,
isoparaffin, cycloparaffin, aromatic, olefin,
alcohol, carboxylic acid, and polycyclic aromatic
hydrocarbon. The main composition of the product
still dominated by carboxylic acid. Figure 9 shows
the product distribution from the hydrocracking
reaction of sunflower oil with a natural zeolite
catalyst and Ni-La metal impregnation. A biofuel

® n-paraffin = cycloparaffin olefin/alkena
ester, alkohol ® lain-lain
5
4
[ |
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2
-
1 [ B
o L mmm
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ester, alkohol ®lain-lain
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Figure 9. Composition for Natural zeolite (a), Ni-La/Zeolite 5% (1:1) (b), Ni-La/Zeolite 5% (1:2) (c), Ni-
La/Zeolite 10% (1:1) (d), and Ni-La/Zeolite 10% (1:2) (e).
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product from a natural zeolite catalyst contains
only carboxylic acid. Then for the Ni-La Zeolite 5%
(1:1) catalyst, there’s a form of n-paraffin,
cycloparaffin, and olefin. For Ni-La/Zeolite 5%
(1:2) there’s a component dominated with olefin
and n-paraffin. GC-MS spectra of the biofuel show
their own retention time for each component. The
catalyst that is impregnated with nickel and
lanthanum can form a variety of hydrocarbon
components. Decreasing composition of n-paraffin
with the addition of a catalyst ratio shows a
cracking activation that can break the long-chain
hydrocarbon into the short one. Hydrocarbon
products from the reaction at 330 °C were greater
than at lower temperatures. Furthermore, cyclic
compounds also increased at 330 °C. This is
because the cracking reaction has not yet occurred
at lower temperatures but begins at higher
temperatures [40]. It could also be due to a less
active catalyst. Hydrocarbon biofuel mainly
contains hydrocarbon and oxygenated compounds.
Based on previous research, pentadecane and
heptadecane  were the most abundant
hydrocarbon compounds in biofuel [41]. During
the cracking process of sunflower oil, the active
sites on the zeolite catalyst promoted the reaction
such as cracking, decarboxylation, and
decarbonylation [42]. Based on XRF and SEM-
EDX, the uniform dispersion of Ni and La on the

zeolite  surface  contributes to  efficient
hydrogenation—dehydrogenation functions,
enabling the conversion of oxygenated

intermediates into hydrocarbons. As a result, the
Ni-La/zeolite catalysts produced n-paraffins,
cycloparaffins, and olefins, whereas natural
zeolite produced only carboxylic acids under the
same conditions. La species, acting as promoters
that enhance metal dispersion and stabilize acidic
sites [41].

Figure 10 shows the results of hydrocarbon
distribution based on carbon chain length. Biofuel
types are categorized into 3, namely gasoline (Cs-
Co), kerosene (Ci10-C13), and gasoil (C14-Caz2).
Natural zeolite catalysts only produce gasoline
and gasoil products at a temperature of 330 °C,
while the zeolite catalyst impregnated with Ni-La
produces gasoline, kerosene, and gasoil products
at a temperature of 250-310 °C. This shows that
Ni-La metal impregnation increases catalytic
activity [43]. The catalyst with the best activity is
Ni-La/Zeolite 10% (1:1) which shows the results of
gasoline, kerosene, and gasoil at a temperature of
330°C with a large composition of more than 10%.
This increase in catalytic activity can be
associated with large pore size, large pore volume,
and a large meso/micropore ratio. The largest
meso/micropore Ni-La/Zeolite 10% (1:1) ratio is
4.9, while natural zeolite without activation has a
large ratio, but the catalyst is not yet active
because activation has not been carried out. In

addition, it can be caused by more active sites
compared to other catalysts [44]. In addition, the
Si/Al ratio also affects catalytic activity because it
affects pore width and acid sites [45].

Textural analysis (Figure 7, Table 2) revealed
that modified zeolite possessed a larger surface
area (49.73 m?/g) and hierarchical micro—
mesoporous structure, which facilitates the
diffusion of bulky triglyceride molecules.
Although impregnation decreased surface area
due to partial pore filling, the presence of well-
dispersed Ni and La species created more active
sites. This is consistent with the observed higher
catalytic activity, evident from (i) higher
hydrocarbon production across Cs—Cze, (ii)
enhanced cracking at 330 °C, and (iii) the broader
carbon chain distribution (Figure 9). The best
performance of Ni-La/Zeolite 10% (1:1) correlates
with its relatively larger mesoporous fraction,
providing accessible sites for both metal-assisted
hydrogenation and acid-catalyzed cracking
pathways [46].

4. Conclusions

The impregnation of the Ni-La/Zeolite
catalyst has been successfully carried out using
the incipient wetness impregnation method, and
the best catalyst results were obtained, namely
Ni-La/Zeolite 10% (1:2) with a surface area of
15.33 m?/g. The XRD diffractogram shows that
natural zeolite has a clinoptilolite phase, the XRF
result shows that acid and base activation
increases the Si/Al ratio from 4.5 to 5, the SEM-
EDX result shows images of natural zeolite
surfaces in the form of aggregate chunks, and
EDX shows Ni and La successfully impregnated
into natural zeolite. The addition of nickel and
lanthanum metals caused a decrease in the
surface area and average pore diameter of the
zeolite. The lowest surface area and average pore
diameter were found in the variation of the Ni-
La/Zeolite 10% (1:2) catalyst, namely 15.33 m?/g
and 13.99 nm. The highest hydrocarbon yield was
found in the hydrocracking process with the Ni-
La/Zeolite 10% (1:1) catalyst with gasoline,
kerosene, and gasoil fractions of 0.91, 0.39, and
832 (% wt), respectively. The hydrocarbon
compound composition of the catalyst includes n-
paraffin (4.43%), isoparaffin (0.21%),
cycloparaffin (2.99%), and olefin (2.71%).
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