skip to main content

Salt-Assisted Mesostructured Cellular Foam (MCF) Silica Synthesis from Bagasse Bottom Ash for Enzymatic Starch Hydrolysis

Department of Chemical Engineering, Universitas Lampung, Jl. S. Brodjonegoro No. 1, Gedong Meneng, Rajabasa, Bandar Lampung 35145, Province of Lampung, Indonesia

Received: 16 Apr 2025; Revised: 26 May 2025; Accepted: 27 May 2025; Available online: 29 May 2025; Published: 30 Oct 2025.
Editor(s): Bunjerd Jongsomjit
Open Access Copyright (c) 2025 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Synthesis of MCF silica is presently conducted solely using TEOS and TMB, with the purpose of immobilizing amylolytic enzymes.  Utilizing BBA and KCl to create the salt-assisted MCF silica present a viable option for converting a natural waste into an effective enzyme carrier, given its substantial silica content.  The objectives were to produce the MCF silica, to employee the MCF silica as the glucoamylase carrier, and to know characteristics of the immobilized enzyme by conducting hydrolysis of starches.  The carrier had surface area of 45.5 m2 g-1, pore volume of 0.12 cm3 g-1, pore size of 9.3 nm, and mesoporous silica type IV.  Reduction in the carrier pore diameter and the medium to strong FTIR vibrations indicated free glucoamylase immobilization on carrier.  The immobilization reached 88.5% efficiency, influenced by factors such as initial enzyme concentration, PO₄ buffer pH, and temperature, with agitation speed having a minor impact.  This optimum value was obtained at the initial enzyme concentration of 9.0 mg mL-1, agitation speed of 120 rpm, buffer pH of 5.5, and temperature of 30°C.  Hydrolysis of starches (tapioca, wheat, potato, corn) resulted in Dextrose Equivalent (DE) values ranging from 5.1% to 63.9%, with the immobilized glucoamylase showing better performance in potato starch hydrolysis (DE of 63.9%) and corn starch (DE of 45.6%).  The use of BBA in synthesis of the salt-assisted MCF silica proved to be a viable and sustainable alternative for enzyme immobilization, with potential applications in industrial starch hydrolysis.

Keywords: bagasse bottom ash; salt-assisted synthesis; dextrose equivalent; amylolytic enzyme; enzyme transporter efficiency
Funding: Directorate General of Higher Education, Ministry of Education and Culture of Republic of Indonesia (No. 2192/UN26.21/PN/2023)

Article Metrics:

  1. Agustian, J., Hermida, L. (2018). Saccharification kinetics at optimized conditions of tapioca by glucoamylase immobilized on mesostructured cellular foam silica. Eurasian Chem. Technol. J. 20, 311-318. https://doi.org/10.18321/ectj764
  2. Agustian, J., Hermida, L. (2019). Capability of immobilized glucoamylase on mesostructured cellular foam silica to hydrolyze tapioca starch. Mater. Sci. Eng. 509, e012058 https://iopscience.iop.org/article/Mater.Sci.Eng10.1088/1757-899X/509/1/012058/pdf
  3. Agustian, J., Hermida, L. (2019). The optimized statistical model for enzymatic hydrolysis of tapioca by glucoamylase immobilized on mesostructured cellular foam silica. Bull. Chem. React. Eng. Catal. 14, 380-390. https://doi.org/10.9767/bcrec.14.2.3078.380-390
  4. George, R., Sugunan, S., (2014). Kinetic and thermodynamic parameters of immobilized glucoamylase on different mesoporous silica for starch hydrolysis: A comparative study. J. Mol. Catal. B: Enzymatic 106, 81-89. https://doi.org/10.1016/j.molcatb.2014.04.016
  5. Vlad-Oros, B., Preda, G., Dudas, Z., Dragomirescu, M., Chiriac, A. (2007). Entrapment of glucoamylase by sol-gel technique in PhTES/TEOS hybrid matrixes. Process Appl. Ceramics 1, 63-67. https://doi.org/10.2298/PAC0702063V
  6. George, R., Gopinath, S., Sugunan, S. (2013). Improved stabilities of immobilized glucoamylase on functionalized mesoporous silica synthesized using decane as swelling agent. Bull. Chem. React. Eng. Catal. 8, 70-76. https://doi.org/10.9767/bcrec.8.1.4208.70-76
  7. Szymanska, K., Bryjak, J., Mrowiec-Białon, J., Jarzebski, A.B. (2007). Application and properties of siliceous mesostructured cellular foams as enzymes carriers to obtain efficient biocatalysts. Micropor. Mesopor. Mat. 99, 167-175. https://doi.org/10.1016/j.micromeso.2006.08.035
  8. Amin, N., Gul, S., Sultana, S., Alam, S. (2021). Preparation and Characterization of Mesoporous Silica from Bagasse Bottom Ash from the Sugar Industry. Crystals 11, e11080938. https://doi.org/10.3390/cryst11080938
  9. Naseem, T., Baig, M.M., Warsi, M.F., Hussain, R., Agboola, P.O., Waseem, M. (2021). Mesoporous silica prepared via a green route: a comparative study for the removal of crystal violet from wastewater. Mat. Res. Exp. 8, e015005. https://doi.org/10.1088/2053-1591/abd45d
  10. Amin, N., Faisal, M., Saeedgul, K.M. (2016). Synthesis and characterization of geopolymer from bagasse bottom ash, waste of sugar industries and naturally available China clay. J. Clean. Prod. 129, 491-495. https://doi.org/10.1016/j.jclepro.2016.04.024
  11. Affandi, S., Setyawan, H., Winardi, S., Purwanto, A., Balgis, R. (2009). A facile method for production of high-purity silica xerogels from bagasse ash. Adv. Powder Technol. 20, 468-472. https://doi.org/10.1016/j.apt.2009.03.008
  12. Morales-Paredes, C.A., Rodríguez-Linzan, I., Saquete, M.D., Luque, L., Osman, S.M., Boluda-Botella, N., Manuel, R.D.J. (2023). Silica-derived materials from agro-industrial waste biomass: Characterization and comparative studies. Environ. Res. 231, 116002(1-8). https://doi.org/10.1016/j.envres.2023.116002
  13. Pérez-Casas, J.A., Zaldívar-Cadena, A.A., Álvarez-Mendez, A., Ruiz-Valdés, J.J., Parra-Arciniega, S.M.D.L., López-Pérez, D.C., Sánchez-Vázquez, A.I. (2023). Sugarcane Bagasse Ash as an Alternative Source of Silicon Dioxide in Sodium Silicate Synthesis. Materials 16, 6327(1-9). https://doi.org/10.3390/ma16186327
  14. September, L.A., Kheswa, N., Seroka, N.S., Khotseng, L. (2023). Green synthesis of silica and silicon from agricultural residue sugarcane bagasse ash – a mini review. RSC Adv. 13, 1370-1380. https://doi.org/10.1039/D2RA07490G
  15. Hermanto, B.M., Noor, E., Arkemna, Y., Riani, E. (2017). Life Cycle Assessment of Silicon From Bagasse Ashes. Brit. J. Env. Sci. 5(3), 9-15. https://eajournals.org/bjes/vol-5-issue-3-june-2017/life-cycleassessment-silicon-bagasse-ashes/
  16. Mamidi, V., Katakojwala, R., Mohan, S.V. (2025). Amorphous nano-silica from sugarcane bagasse ash – process optimization, characterization, and sustainability analysis. Biomass Conv. Biorefin. 15:4059-4071. https://doi.org/10.1007/s13399-024-05548-8
  17. Sukirna, I., Dhaneswara, D., Siregar, D.J., Fatriansyah, J.F., Sofyan, N., Yuwono, A.H., R. Muslih. (2024). Synthesis of Mesoporous Silica from Sugarcane Bagasse Ash Using Pluronic 123 as a Colorant Adsorbent for Brilliant Green. EVERGREEN 11, 1366-1374. https://doi.org/10.5109/7183448
  18. Dhaneswara, D., Tsania, A., Fatriansyah, J.F., Federico, A., Ulfiati, R., Muslih, R., Mastuli, M.S. (2024). Synthesis of Mesoporous Silica from Sugarcane Bagasse as Adsorbent for Colorants Using Cationic and Non-Ionic Surfactants. Int. J. Technol. 15(2), 373-382. https://doi.org/10.14716/ijtech.v15i2.6721
  19. Rahman, N.A., Widhiana, I., Juliastuti, S.R., Setyawan, H. (2015). Synthesis of mesoporous silica with controlled pore structure from bagasse ash as a silica source. Colloids Surf. A: Physicochem. Eng. Asp. 476, 1-7. https://doi.org/10.1016/j.colsurfa.2015.03.018
  20. Hermida, L., Agustian, J. (2024). The application of conventional or magnetic materials to support immobilization of amylolytic enzymes for batch and continuous operation of starch hydrolysis processes. Rev. Chem. Eng. 40(1), 1-34. https://doi.org/10.1515/revce-2022-003
  21. Grace, M. (2024). Enzyme Immobilization: Its Advantages, Applications and Challenges. Enz. Eng. 13, 248-249. https://www.longdom.org/open-access-pdfs/enzyme-immobilization-its-advantages-applications-and-challenges.pdf
  22. Prabhakar, T., Giaretta, J. Zulli, R., Rath, R.J., Farajikhah, S., Talebian, S., Dehghani, F. (2025). Covalent immobilization: A review from an enzyme perspective. Chem. Eng. J. 503, 158054. https://www.sciencedirect.com/science/article/pii/S1385894724095457?via%3Dihub
  23. Robescu, M.S., Bavaro, T. (2025). A Comprehensive Guide to Enzyme Immobilization: All You Need to Know. Molecules, 30, 939. https://doi.org/10.3390/molecules30040939
  24. Zhao, D., Huo, Q., Feng, J., Chmelka, B.F., Stucky, G.D. (1998). Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures. J. Am. Chem. Soc. 120, 6024-6036. https://doi.org/10.1021/ja974025i
  25. Schmidt-Winkel, P., Glinka, C.J., Stucky, G.D. (2000). Microemulsion Templates for Mesoporous Silica. Langmuir 16, 356-361. https://doi.org/10.1021/la9906774
  26. Choi, Y., Lee, J., Kim, J. (2015). Salt-assisted synthesis of mesostructured cellular foams consisting of small primary particles with enhanced hydrothermal stability. Micropor. Mesopor. Mat. 212, 66-72. https://doi.org/10.1016/j.micromeso.2015.03.029
  27. Hermida, L., Abdullah, A.Z., Mohamed, A.R. Nickel functionalized mesostructured cellular foam (MCF) silica as a catalyst for solventless deoxygenation of palmitic acid to produce diesel-like hydrocarbons, in Ed Méndez-Vilas A. (2013). Materials and processes for energy: communicating current research and technological developments. Spain. Formatex Research Centre. pp. 312-319
  28. Ma, J., Liu, Q., Chen, D., Wen, S., Wang, T. (2015). Synthesis and characterisation of pore-expanded mesoporous silica materials. Micro Nano Lett. 10, 140-144. https://doi.org/10.1049/mnl.2014.0413
  29. Shi, Y., Li, B., Wang, P., Dua, R., Zhao, D. (2012). Micelle swelling agent derived cavities for increasing hydrophobic organic compound removal efficiency by mesoporous micelle@silica hybrid materials. Micropor. Mesopor. Mat. 155, 252-257. https://doi.org/10.1016/j.micromeso.2012.02.002
  30. Hasanah, U., Wikarsa, S., Asyarie, S. (2021). Various Chloride Salt Addition in Mesoporous Material (SBA-15) Synthesis and Potential as Carrier for Dissolution Enhancer. Adv. Health Sci. Res. 40, 343-349. https://doi.org/10.2991/ahsr.k.211105.050
  31. Sangteantong, P., Chainarong, K., Donphai, W., Chareonpanich, M. (2024). Green synthesis of surfactant-free mesoporous silica with strong hydrophilicity via metal salt modifications for moisture adsorption. React. Chem. Eng. 9, 816-824. https://doi.org/10.1039/D3RE00513E
  32. Hermida, L., Abdullah, A.Z., Mohamed, A.R. (2013). Synthesis and Characterization of Mesostructured Cellular Foam (MCF) Silica Loaded with Nickel Nanoparticles as a Novel Catalyst. Mater. Sci. Appl. 4(1):52-62. http://dx.doi.org/10.4236/msa.2013.41007
  33. Swar, S., Máková, V., Stibor, I. (2019). Effectiveness of Diverse Mesoporous Silica Nanoparticles as Potent Vehicles for the Drug L-DOPA. Materials e12193202. https://doi.org/10.3390/ma12193202
  34. Coates, J. Interpretation of Infrared Spectra, A Practical Approach. in Meyers, R.A. (2000). Encyclopedia of Analytical Chemistry. Chichester. John Wiley & Sons Ltd. pp. 10815–10837
  35. Stuart, B.H. (2004). Infrared Spectroscopy: Fundamentals and Applications, New York. John Wiley & Sons Inc. pp. 45-70
  36. Segneanu, A.E., Gozescu, I., Dabici, A.M., Sfirloaga, P., Szabadai, Z, Organic Compounds FT-IR Spectroscopy. in Uddin, J. Macro to Nano Spectroscopy. (2012). Rijeka. InTech Open. pp. 145-164
  37. Wehling, R.J. Chapter 23 Infrared spectroscopy Part IV. Spectroscopy. In Nielsen, S.S. Food analysis, Food Science Texts Series (2003). Boston. Springer. pp. 407-420
  38. Ali, S., Hossain, Z., Mahmood, S., Alam, R. (1990). Purification of glucoamylase from Aspergillus terreus. World J. Microbiol. Biotechnol. 6, 431-433. https://doi.org/10.1007/BF01202129
  39. Svensson, B., Pederse, T.G., Svendsen, I.B., Sakai, T., Otiesen, M. (1982). Characterization of two forms of glucoamylase from Aspergillus niger. Carlsberg Res. Comm. 47:55-69. https://doi.org/10.1007/BF02907797
  40. Slivinski, C.T., Vinicius, A., Machado, L., Iulek, J., Ayub, R.A., de Almeida, M.D. (2011). Biochemical Characterisation of a Glucoamylase from Aspergillus niger Produced by Solid-State Fermentation. Braz. Arch. Biol. Technol. 54(3), 559-568. https://doi.org/10.1590/S1516-89132011000300018
  41. Li, D.C., Yang, Y.J., Peng, Y.L., Shen, C.Y. (1998). Purification and characterization of extracellular glucoamylase from the thermophilic Thermomyces lanuginosus. Mycol. Res. 102(5), 568-572. https://doi.org/10.1017/S0953756297005200
  42. Rao, V.B., Sastri, N.V.B., Rao, P.V.S. (1981). Purification and characterization of a thermostable glucoamylase from the thermophilic fungus Thermomyces lanuginosus. Biochem. J. 193:379-387. https://doi.org/10.1042/bj1930379
  43. Kanyalakrit, W., Koichi, N., Yuji, T. (1989). Raw-Starch-Digesting Glucoamylase from Amylomyces sp. 4-2 Isolated from Loogpang Kaomag in Thailand. J. Fac. Agricul. Kyushu Univ. 33, 177-187. https://api.lib.kyushu-u.ac.jp/opac_download_md/23927/p177.pdf
  44. Palleros, D.R. (2000). Infrared Spectroscopy in Experimental Organic Chemistry. New York. Wiley
  45. Chen, G., Ma, Y., Su, P., Fang, B. (2012). Direct binding glucoamylase onto carboxyl-functioned magnetic nanoparticles. Biochem. Eng. J. 67, 120-125. https://doi.org/10.1016/j.bej.2012.06.002
  46. Bayne, L., Ulijn, R.V., Halling, P.J. (2013). Effect of pore size on the performance of immobilised enzymes. Chem. Soc. Rev. 42, 9000-9010. https://doi.org/10.1039/C3CS60270B
  47. Butterfield, A., Bhattacharyya, D., Daunert, S., Bachas, L. (2001). Catalytic biofunctional membranes containing site specifically immobilized enzyme arrays: a review. J. Membr. Sci. 181:29-37. https://doi.org/10.1016/S0376-7388(00)00342-2
  48. Dwevedi, A, Basics of Enzyme Immobilization. in Dwevedi, A. Enzyme Immobilization. (2016). Switzerland. Springer International Publishing. pp. 21-44
  49. Milosavić, N., Prodanović, R., Jovanović, S., Novakovic, I., Vujčić, Z. (2005). Preparation and characterization of two types of covalently immobilized amyloglucosidase. J. Serb. Chem. Soc. 70(5), 713-719. https://doiserbia.nb.rs/img/doi/0352-5139/2005/0352-51390505713M.pdf
  50. Milosavić, N.B., Prodanović, R.M., Jovanović, M.S., Vujčić, Z.M. (2004). Immobilization of Glucoamylase on Macroporous Sphesres. APTEFF 35, 207-214. https://scindeks-clanci.ceon.rs/data/pdf/1450-7188/2004/1450-71880435207M.pdf
  51. Milosavić, N.B., Prodanović, R.M., Jovanović, S.M., Vujčić, Z.M. (2007). Immobilization of glucoamylase via its carbohydrate moiety on macroporous poly(GMA-co-EGDMA). Enzyme Microb. Technol. 40, 1422-1426. https://doi.org/10.1016/j.enzmictec.2006.10.018
  52. Panek, A., Pietrow, O., Synowiecki, J. (2012). Characterization of glucoamylase immobilized on magnetic nanoparticles. Starch 64(12), 1003-1008. https://doi.org/10.1002/star.201200084
  53. Kovalenko, G.A., Perminova, L.V. (2008). Immobilization of glucoamylase by adsorption on carbon supports and its application for heterogeneous hydrolysis of dextrin. Carbohyd. Res. 343, 1202-1211. https://doi.org/10.1016/j.carres.2008.02.006
  54. Kovalenko, G.A., Perminova, L.V., Terent’eva, T.G., Plaksin, G.V. (2007). Catalytic Properties of Glucoamylase Immobilized on Synthetic Carbon Material Sibunit. Appl. Biochem. Microbiol. 43(4), 374-378. https://doi.org/10.1134/S0003683807040023
  55. Zhao, G., Wang, J., Li, Y., Chen, X., Liu Y. (2011). Enzymes Immobilized on Superparamagnetic Fe3O4@Clays Nanocomposites: Preparation, Characterization, and a New Strategy for the Regeneration of Supports. J. Phys. Chem. C 115, 6350-6359. https://doi.org/10.1021/jp200156j
  56. Zhao, G., Wang, J., Li. Y., Huang, H., Chen, X. (2012). Reversible immobilization of glucoamylase onto metal–ligand functionalized magnetic FeSBA-15. Biochem. Eng. J. 68, 159-166. https://doi.org/10.1016/j.bej.2012.04.009
  57. Kalburcu, T., Tuzmen, M.N., Akgol, S., Denizli, A. (2014). Immobilized metal ion affinity nanospheres for α-amylase immobilization. Turkish J. Chem. 38, 28-40. https://doi.org/10.3906/kim-1301-87
  58. Demirkan, E., Dincbas, S. Sevinc, N., Ertan, F. (2011). Immobilization of B. amyloliquefaciens α-amylase and comparison of some of its enzymatic properties with the free form. Roman. Biotechnol. Lett. 16 6690. https://rombio.unibuc.ro/wp-content/uploads/2022/05/16-6-3.pdf
  59. Ashly, P.C., Joseph, M.J., Mohanan, P.V. (2011). Activity of diastase α-amylase immobilized on polyanilines (PANIs). Food Chem. 127, 1808-1813. https://doi.org/10.1016/j.foodchem.2011.02.068

Last update:

No citation recorded.

Last update:

No citation recorded.