skip to main content

Energy-efficient Carbon-doped TiO2 for Visible Light Degradation of Methyl Orange: Preparation, Performance, and Mechanism

1School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor, Malaysia

2Department of Mathematics, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor, Malaysia

3College of Chemistry and Chemical Engineering, Xiamen University, 361005 Xiamen, China

Received: 27 Oct 2024; Revised: 5 Dec 2024; Accepted: 6 Dec 2024; Available online: 7 Dec 2024; Published: 30 Dec 2024.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2024 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Water pollution caused by textile dyes has become a serious issue, making the treatment of sewage urgent. Carbon-doped TiO2 (C-doped TiO2), using alkanes and polyols as carbon sources, has been found to be light-responsive in degrading dyes. However, there is a lack of studies on the interfacial interaction between carboxylic acids and TiO2. Therefore, citric acid, a triprotic, hexadentate carboxylic acid, was used to dope TiO2 through solvothermal-calcination. The effects of carbon content and calcination temperature on the photodegradation performance of C-doped TiO2 were investigated. The band gap energy of C-doped TiO2 was found to be narrower (2.67 eV) than that of undoped TiO2 (2.88 eV). After carbon doping, the absorption band extended from the UV to the visible regions, lowering the energy required for electron excitation. The functional groups present on C-doped TiO2 assisted in the adsorption of methyl orange (MO), assisting in photodegradation. Only the anatase phase of TiO2 was observed at calcination temperatures between 250 and 400 °C. Photoluminescence analysis revealed that a lower carbon content and slightly higher calcination temperature resulted in better interfacial charge separation and transfer efficiency. The 10 wt% C-doped TiO2 calcined at 300 °C demonstrated the best MO photodegradation efficiency of 62.1% under visible light illumination. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: energy efficient; carbon-doped TiO2; wastewater treatment; green synthesis; photodegradation
Funding: Xiamen University Malaysia Research Fund under contract XMUMRF/2019-C4/IENG/0019 and XMUMRF/2020-C5/IENG/0029

Article Metrics:

  1. Guo, H., Jiang, S., Wang, C., Li, S., Feng, J., Sun, H., Zhu, H., Guo, H., Liu, M., Sun, H. (2019). Carbonaceous Nanofibers-titanium Dioxide Nanocomposites: Synthesis and Use as a Platform for Removal of Dye Pollutants. Journal Wuhan University of Technology, Materials Science Edition, 34(2), 303–307. DOI: 10.1007/s11595-019-2051-9
  2. Shen, S., Li, H., Fu, J. jia, Wang, H.B. (2022). Wastewater purification with different precursors of carbon dots dominated titanium dioxide: Mechanism insight. Journal of Alloys and Compounds, 922, 166162. DOI: 10.1016/j.jallcom.2022.166162
  3. Al-Mamun, M.R., Kader, S., Islam, M.S., Khan, M.Z.H. (2019). Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review. J. Environ. Chem. Eng. 7, 103248. DOI: 10.1016/j.jece.2019.103248
  4. Samadi, A., Gao, L., Kong, L., Orooji, Y., Zhao, S. (2022). Waste-derived low-cost ceramic membranes for water treatment: Opportunities, challenges and future directions. Resour. Conserv. Recycl. 185, 106497. DOI: 10.1016/j.resconrec.2022.106497
  5. Moslah, C., Kandyla, M., Mousdis, G.A., Petropoulou, G., Ksibi, M. (2018). Photocatalytic Properties of Titanium Dioxide Thin Films Doped with Noble Metals (Ag, Au, Pd, and Pt). Physica Status Solidi (A) Applications and Materials Science, 215(17), 800023. DOI: 10.1002/pssa.201800023
  6. Astuti, Y., Musthafa, F., Arnelli, A., Nurhasanah, I. (2022). French Fries-Like Bismuth Oxide: Physicochemical Properties, Electrical Conductivity and Photocatalytic Activity. Bulletin of Chemical Reaction Engineering & Catalysis, 17(1), 146–156. DOI: 10.9767/BCREC.17.1.12554.146-156
  7. Nasralla, N., Yeganeh, M., Astuti, Y., Piticharoenphun, S., Shahtahmasebi, N., Kompany, A., Karimipour, M., Mendis, B.G., Poolton, N.R.J., Šiller, L. (2013). Structural and spectroscopic study of Fe-doped TiO2 nanoparticles prepared by sol-gel method. Scientia Iranica, 20(3), 1018–1022. DOI: 10.1016/j.scient.2013.05.017
  8. Astuti, Y., Ana Tasiman, B.H., Widiyandari, H., Arutanti, O., Mufti, N., Ogi, T. (2024). A mixed Bi2O3/CQDs provides better photocatalytic activity in organic dyes pollutant model. Nanotechnology for Environmental Engineering. 9, 561–571. DOI: 10.1007/s41204-024-00383-8
  9. Xu, C., Killmeyer, R., Gray, M.L., Khan, S.U.M. (2006). Photocatalytic effect of carbon-modified n-TiO2 nanoparticles under visible light illumination. Applied Catalysis B: Environmental, 64(3–4), 312–317. DOI: 10.1016/j.apcatb.2005.11.008
  10. Gómez-Avilés, A., Peñas-Garzón, M., Bedia, J., Rodriguez, J.J., Belver, C. (2019). C-modified TiO2 using lignin as carbon precursor for the solar photocatalytic degradation of acetaminophen. Chemical Engineering Journal, 358, 1574–1582. DOI: 10.1016/j.cej.2018.10.154
  11. Dong, F., Wang, H., Wu, Z. (2009). One-step “Green” synthetic approach for mesoporous C-doped titanium dioxide with efficient visible light photocatalytic activity. Journal of Physical Chemistry C, 113(38), 16717–16723. DOI: 10.1021/jp9049654
  12. Janus, M., Tryba, B., Inagaki, M., Morawski, A.W. (2004). New preparation of a carbon-TiO2 photocatalyst by carbonization of n-hexane deposited on TiO2. Applied Catalysis B: Environmental, 52(1), 61–67. DOI: 10.1016/j.apcatb.2004.03.011
  13. Kavitha, R., Devi, L.G. (2014). Synergistic effect between carbon dopant in titania lattice and surface carbonaceous species for enhancing the visible light photocatalysis. Journal of Environmental Chemical Engineering, 2(2), 857–867. DOI: 10.1016/j.jece.2014.02.016
  14. Lin, Y.T., Weng, C.H., Lin, Y.H., Shiesh, C.C., Chen, F.Y. (2013). Effect of C content and calcination temperature on the photocatalytic activity of C-doped TiO2 catalyst. Separation and Purification Technology, 116, 114–123. DOI: 10.1016/j.seppur.2013.05.018
  15. Xiao, Q., Zhang, J., Xiao, C., Si, Z., Tan, X. (2008). Solar photocatalytic degradation of methylene blue in carbon-doped TiO2 nanoparticles suspension. Solar Energy, 82(8), 706–713. DOI: 10.1016/j.solener.2008.02.006
  16. Teng, F., Zhang, G., Wang, Y., Gao, C., Chen, L., Zhang, P., Zhang, Z., Xie, E. (2014). The role of carbon in the photocatalytic reaction of carbon/TiO2 photocatalysts. Applied Surface Science, 320, 703–709. DOI: 10.1016/j.apsusc.2014.09.153
  17. Ma, Y., Han, L., Ma, H., Wang, J., Liu, J., Cheng, L., Yang, J., Zhang, Q. (2017). Improving the visible-light photocatalytic activity of interstitial carbon-doped TiO2 with electron-withdrawing bidentate carboxylate ligands. Catalysis Communications, 95, 1–5. DOI: 10.1016/j.catcom.2017.02.025
  18. Wu, X., Yin, S., Dong, Q., Guo, C., Li, H., Kimura, T., Sato, T. (2013). Synthesis of high visible light active carbon doped TiO2 photocatalyst by a facile calcination assisted solvothermal method. Applied Catalysis B: Environmental, 142–143, 450–457. DOI: 10.1016/j.apcatb.2013.05.052
  19. Park, Y., Kim, W., Park, H., Tachikawa, T., Majima, T., Choi, W. (2009). Carbon-doped TiO2 photocatalyst synthesized without using an external carbon precursor and the visible light activity. Applied Catalysis B: Environmental, 91(1–2), 355–361. DOI: 10.1016/j.apcatb.2009.06.001
  20. Li, W., Liang, R., Zhou, N.Y., Pan, Z. (2020). Carbon Black-Doped Anatase TiO2 Nanorods for Solar Light-Induced Photocatalytic Degradation of Methylene Blue. ACS Omega, 5(17), 10042–10051. DOI: 10.1021/acsomega.0c00504
  21. Chen, C., Long, M., Zeng, H., Cai, W., Zhou, B., Zhang, J., Wu, Y., Ding, D., Wu, D. (2009). Preparation, characterization and visible-light activity of carbon modified TiO2 with two kinds of carbonaceous species. Journal of Molecular Catalysis A: Chemical, 314(1–2), 35–41. DOI: 10.1016/j.molcata.2009.08.014
  22. Wang, Y., Chen, Y.X., Barakat, T., Wang, T.M., Krief, A., Zeng, Y.J., Laboureur, M., Fusaro, L., Liao, H.G., Su, B.L. (2021). Synergistic effects of carbon doping and coating of TiO2 with exceptional photocurrent enhancement for high performance H2 production from water splitting. Journal of Energy Chemistry, 56, 141–151. DOI: 10.1016/j.jechem.2020.08.002
  23. Lin, Y.T., Weng, C.H., Lin, Y.H., Shiesh, C.C., Chen, F.Y. (2013). Effect of C content and calcination temperature on the photocatalytic activity of C-doped TiO2 catalyst. Separation and Purification Technology, 116, 114–123. DOI: 10.1016/j.seppur.2013.05.018
  24. Zhong, J., Chen, F., Zhang, J. (2010). Carbon-deposited TiO2: Synthesis, characterization, and visible photocatalytic performance. Journal of Physical Chemistry C, 114(2), 933–939. DOI: 10.1021/jp909835m
  25. Raghu, A.V., Karuppanan, K.K., Pullithadathil, B. (2019). Controlled Carbon Doping in Anatase TiO2 (101) Facets: Superior Trace-Level Ethanol Gas Sensor Performance and Adsorption Kinetics. Advanced Materials Interfaces, 6(4) DOI: 10.1002/admi.201801714
  26. Perera, S.D., Mariano, R.G., Vu, K., Nour, N., Seitz, O., Chabal, Y., Balkus, K.J. (2012). Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity. ACS Catalysis, 2(6), 949–956. DOI: 10.1021/cs200621c
  27. Gonçalves, B.S., Palhares, H.G., Souza, T.C.C.D., Castro, V.G.D., Silva, G.G., Silva, B.C., Krambrock, K., Soares, R.B., Lins, V.F.C., Houmard, M., Nunes, E.H.M. (2019). Effect of the carbon loading on the structural and photocatalytic properties of reduced graphene oxide-TiO2 nanocomposites prepared by hydrothermal synthesis. Journal of Materials Research and Technology, 8(6), 6262–6274. DOI: 10.1016/j.jmrt.2019.10.020
  28. Sean, N.A., Leaw, W.L., Nur, H. (2019). Effect of calcination temperature on the photocatalytic activity of carbon-doped titanium dioxide revealed by photoluminescence study. Journal of the Chinese Chemical Society, 66(10), 1277–1283. DOI: 10.1002/jccs.201800389
  29. Muniandy, L., Adam, F., Mohamed, A.R., Ng, E.P., Rahman, N.R.A. (2016). Carbon modified anatase TiO2 for the rapid photo degradation of methylene blue: A comparative study. Surfaces and Interfaces, 5, 19–29. DOI: 10.1016/j.surfin.2016.08.006
  30. Teng, F., Zhang, G., Wang, Y., Gao, C., Chen, L., Zhang, P., Zhang, Z., Xie, E. (2014). The role of carbon in the photocatalytic reaction of carbon/TiO2 photocatalysts. Applied Surface Science, 320, 703–709. DOI: 10.1016/j.apsusc.2014.09.153
  31. Li, W., Liang, R., Zhou, N.Y., Pan, Z. (2020). Carbon Black-Doped Anatase TiO2 Nanorods for Solar Light-Induced Photocatalytic Degradation of Methylene Blue. ACS Omega, 5(17), 10042–10051. DOI: 10.1021/acsomega.0c00504
  32. Kavitha, R., Devi, L.G. (2014). Synergistic effect between carbon dopant in titania lattice and surface carbonaceous species for enhancing the visible light photocatalysis. Journal of Environmental Chemical Engineering, 2(2), 857–867. DOI: 10.1016/j.jece.2014.02.016
  33. Sean, N.A., Leaw, W.L., Nur, H. (2019). Effect of calcination temperature on the photocatalytic activity of carbon-doped titanium dioxide revealed by photoluminescence study. Journal of the Chinese Chemical Society, 66(10), 1277–1283. DOI: 10.1002/jccs.201800389
  34. He, J., Kumar, A., Khan, M., Lo, I.M.C. (2021). Critical review of photocatalytic disinfection of bacteria: from noble metals- and carbon nanomaterials-TiO2 composites to challenges of water characteristics and strategic solutions. Science of The Total Environment, 758, 143953. DOI: 10.1016/j.scitotenv.2020.143953
  35. Li, Y., Li, X., Li, J., Yin, J. (2006). Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study. Water Research, 40(6), 1119–1126. DOI: 10.1016/j.watres.2005.12.042
  36. Alkorbi, A.S., Muhammad Asif Javed, H., Hussain, S., Latif, S., Mahr, M.S., Mustafa, M.S., Alsaiari, R., Alhemiary, N.A. (2022). Solar light-driven photocatalytic degradation of methyl blue by carbon-doped TiO2 nanoparticles. Optical Materials, 127, 112259. DOI: 10.1016/j.optmat.2022.112259

Last update:

No citation recorded.

Last update:

No citation recorded.