skip to main content

Synthesis of Mesoporous ZnO•SiO2 Nanocomposite from Rice Husk for Enhanced Degradation of Organic Substances Including Janus Green B under Visible Light

1School of Chemistry and Life Sciences, Hanoi University of Science and Technology, Hanoi, Viet Nam

2Nguyen Gia Thieu High School, Hanoi, Viet Nam

Received: 25 Jun 2024; Revised: 5 Aug 2024; Accepted: 5 Aug 2024; Available online: 8 Sep 2024; Published: 30 Oct 2024.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2024 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Rice husk (RH) is often mentioned as an agricultural by-product, often used in the pass as fertilizer and for raw burning. With modern science, RH have been researched and found many new potential benefits and applications. In this study, RH were used to synthesize amorphous SiO2, which was used to prepare the ZnO•SiO2 nanocomposites by a hydrothermal method. The as-synthesized materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and N2 adsorption/desorption isotherm. Their photocatalytic properties were studied by an ultraviolet-vis spectrophotometer and a fluorescence spectrophotometer. The ZnO•SiO2 nanocomposite has an excellent ability to degrade organic substances such as dyes, antibiotics, caffeine, etc. The effects of operating parameters on the photo-degradation reaction progress, including catalyst dosage, initial dye concentration, and pH of the initial dye were investigated in detail. In addition, the photodegradation rate of the dye on the ZnO•SiO2 nanocomposite was evaluated using the pseudo-first-order model. The ZnO•SiO2 nanocomposite can be used as a photocatalyst for wastewater treatment as it detaches much more easily from the solution. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Photodegradation; Zinc Oxide; Amorphous Silica; Rice Husk; Janus Green B.
Funding: Vingroup Innovation Foundation (VINIF) under contract code VINIF.2023.ThS.061

Article Metrics:

  1. Food and Agriculture Organization of the United Nations (2024). GIEWS - Global Information and Early Warning System. Available: https://www.fao.org/giews/countrybrief/country.jsp?code=VNM
  2. Vu, A.-T., Xuan, T.N., Lee, C.-H. (2019). Preparation of mesoporous Fe2O3·SiO2 composite from rice husk as an efficient heterogeneous Fenton-like catalyst for degradation of organic dyes. Journal of Water Process Engineering, 28, 169-180. DOI: 10.1016/j.jwpe.2019.01.019.
  3. Vu, A.-T., Nguyen, T.H., Nguyen, T.H. (2023). Preparation of carnation-like Ag-ZnO composites for enhanced photocatalysis under visible light. Nanotechnology, 34(27), 275602. DOI: 10.1088/1361-6528/acca24
  4. Nguyen, T.H., Nguyen, V.D., Vu, A.-T. (2024). Synthesis of CS-Fe3O4/GO nanocomposite for adsorption of heavy metal in aqueous environment. Nanotechnology, 35, 345705. DOI: 10.1088/1361-6528/ad50e3
  5. Vu, A.-T., Nguyen, M.V., Nguyen, T.H. (2024). Fabrication of ethylenediaminetetraacetic modified porous silica composite from rice husk for enhancing the remove of Pb2+ from aqueous solution. Results in Materials, 21, 100525. DOI: 10.1016/j.rinma.2023.100525
  6. Moussavi, G., Mahmoudi, M. (2009). Removal of azo and anthraquinone reactive dyes from industrial wastewaters using MgO nanoparticles. Journal of Hazardous Materials, 168(2), 806-812. DOI: 10.1016/j.jhazmat.2009.02.097
  7. Zhu, Q., Wang, W.-S., Lin, L., Gao, G.-Q., Guo, H.-L., Du, H., Xu, A.-W. (2013). Facile Synthesis of the Novel Ag3VO4/AgBr/Ag Plasmonic Photocatalyst with Enhanced Photocatalytic Activity and Stability. The Journal of Physical Chemistry C, 117(11), 5894-5900. DOI: 10.1021/jp400842r
  8. Batool, S., Imran, Z., Hassan, S., Rasool, K., Ahmad, M., Rafiq, M. (2016). Enhanced adsorptive removal of toxic dyes using SiO2 nanofibers. Solid State Sciences, 55, 13-20. DOI: 10.1016/j.solidstatesciences.2016.02.001
  9. Thu, H.T., Dat, L.T., Tuan, V.A. (2019). Synthesis of mesoporous SiO2 from rice husk for removal of organic dyes in aqueous solution. Vietnam Journal of Chemistry, 57(2), 175-181. DOI: 10.1002/vjch.201900012
  10. Aguado, J., Van Grieken, R., López-Muñoz, M.-J., Marugán, J. (2006). A comprehensive study of the synthesis, characterization and activity of TiO2 and mixed TiO2/SiO2 photocatalysts. Applied Catalysis A: General, 312, 202-212. DOI: 10.1016/j.apcata.2006.07.003
  11. Jia, Z.-G., Peng, K.-K., Li, Y.-H., Zhu, R.-S. (2012). Preparation and photocatalytic performance of porous ZnO microrods loaded with Ag. Transactions of Nonferrous Metals Society of China, 22(4), 873-878. DOI: 10.1016/S1003-6326(11)61259-4
  12. Pham, T.A.T., Tran, V.A., Le, V.D., Nguyen, M.V., Truong, D.D., Do, X.T., Vu, A.-T. (2020). Facile preparation of ZnO nanoparticles and Ag/ZnO nanocomposite and their photocatalytic activities under visible light. International Journal of Photoenergy, 2020, 8897667. DOI: 10.1155/2020/8897667
  13. Nguyen, T.H., Cong, T.A.N., Vu, A.-T. (2023). Synthesis of Carnation-Like ZnO for Photocatalytic Degradation of Antibiotics, Including Tetracycline Hydrochloride. Environmental Engineering Science, 40(8), 329–339. DOI: 10.1089/ees.2023.0034
  14. Tu, V.A., Tuan, V.A. (2018). A facile and fast solution chemistry synthesis of porous ZnO nanoparticles for high efficiency photodegradation of tartrazine. Vietnam Journal of Chemistry, 56(2), 214-219. DOI: 10.1002/vjch.201800016
  15. Nguyen, T.H., Vu, A.-T. (2023). Investigation of enhanced degradation of the antibiotic under visible in novel B/ZnO/TiO2 nanocomposite and its electrical energy consumption. Nanotechnology, 35(1), 015709. DOI: 10.1088/1361-6528/acffce
  16. Tuấn, V.A., Minh, P.Q., Anh, N.T.T., Vi, Đ.T.C., Hằng, N.T.B., Hương. N.T. (2024). Tổng hợp vật liệu Ag/ZnO/g-C3N4 bằng phương pháp nung đơn giản để loại bỏ kháng sinh tetracycline hydrochloride trong môi trường nước Journal of Control Vaccines Biologicals, 4(1), 142. DOI: 10.56086/jcvb.v4i1.142
  17. Ahmad, M., Ahmed, E., Hong, Z.L., Ahmed, W., Elhissi, A., Khalid, N.R. (2014). Photocatalytic, sonocatalytic and sonophotocatalytic degradation of Rhodamine B using ZnO/CNTs composites photocatalysts. Ultrasonics Sonochemistry, 21(2), 761-773. DOI: 10.1016/j.ultsonch.2013.08.014
  18. Zuo, Z., Liao, R., Zhao, X., Song, X., Qiao, Z., Guo, C., Zhuang, A., Yuan, Y. (2017). Anti-frosting performance of superhydrophobic surface with ZnO nanorods. Applied Thermal Engineering, 110, 39-48. DOI: 10.1016/j.applthermaleng.2016.08.145
  19. Perillo, P.M., Atia, M.N., Rodríguez, D.F. (2017). Effect of the reaction conditions on the formation of the ZnO nanostructures. Physica E: Low-dimensional Systems and Nanostructures, 85, 185-192. DOI: 10.1016/j.physe.2016.08.029
  20. Nguyen, T.H., Mai, T.T., Tran, T.P., Thi, C.L.T., Thi, C.V.D., Thi, M.L.V., Nguyen, M.V., Nguyen, T.H., Vu, A.-T. (2024). Studying the Nanocomposite B/ZnO for Photocatalysis: Facile Control the Morphology via Sol-gel Method and Antibiotic Degradation Investigations. Journal of Sol-Gel Science and Technology, 110, 319–332. DOI: 10.1007/s10971-024-06359-z
  21. Vu, A.-T., Pham, T.A.T., Do, X.T., Tran, V.A., Le, V.D., Truong, D.D., Nguyen, T.H., Nguyen, M.V. (2021). Preparation of hierarchical structure au/ZnO composite for enhanced photocatalytic performance: characterization, effects of reaction parameters, and oxidizing agent investigations. Adsorption Science and Technology, 2021, 5201497. DOI: 10.1155/2021/5201497
  22. Keerthana, S., Yuvakkumar, R., Ravi, G., Thambidurai, M., Nguyen, H.D., Velauthapillai, D. (2023). Sr doped TiO2 photocatalyst for the removal of Janus Green B dye under visible light. RSC Advances, 13(27), 18779-18787. DOI: 10.1039/D3RA00567D
  23. Vu, A.-T., Pham, T.A.T., Tran, T.T., Nguyen, X.T., Tran, T.Q., Tran, Q.T., Nguyen, T.N., Doan, T.V., Vi, T.D., Nguyen, C.L. (2020). Synthesis of nano-flakes Ag• ZnO• activated carbon composite from rice husk as a photocatalyst under solar light. Bulletin of Chemical Reaction Engineering & Catalysis, 15(1), 264-279. DOI: 10.9767/bcrec.15.1.5892.264-279
  24. Subash, B., Krishnakumar, B., Swaminathan, M., Shanthi, M. (2013). Highly Efficient, Solar Active, and Reusable Photocatalyst: Zr-Loaded Ag–ZnO for Reactive Red 120 Dye Degradation with Synergistic Effect and Dye-Sensitized Mechanism. Langmuir, 29(3), 939-949. DOI: 10.1021/la303842c
  25. Akyol, A., Yatmaz, H.C., Bayramoglu, M. (2004). Photocatalytic decolorization of Remazol Red RR in aqueous ZnO suspensions. Applied Catalysis B: Environmental, 54(1), 19-24. DOI: 10.1016/j.apcatb.2004.05.021
  26. Krishnakumar, B., Swaminathan, M. (2012). Photodegradation of Acid Violet 7 with AgBr–ZnO under highly alkaline conditions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 99, 160-165. DOI: 10.1016/j.saa.2012.08.077
  27. Lang, X., Chen, X., Zhao, J. (2014). Heterogeneous visible light photocatalysis for selective organic transformations. Chemical Society Reviews, 43, 473-486. DOI: 10.1039/C3CS60188A
  28. Behnajady, M.A., Modirshahla, N., Hamzavi, R. (2006). Kinetic study on photocatalytic degradation of C.I. Acid Yellow 23 by ZnO photocatalyst. Journal of Hazardous Materials, 133(1), 226-232. DOI: 10.1016/j.jhazmat.2005.10.022
  29. Krishnakumar, D.B., Swaminathan, M. (2013). Solar photocatalytic degradation of Naphthol Blue Black. Desalination and Water Treatment, 51, 34-36. DOI: 10.1080/19443994.2013.792131
  30. Nguyen, T.H., Vu, A.-T. (2022). Preparation of B/ZnO Nanocomposite by Simple Mechanical Combustion Method for Removal of Antibiotics in Aqueous Environments. Bulletin of Chemical Reaction Engineering & Catalysis, 17(4), 786-797. DOI: 10.9767/bcrec.17.4.16090.786-797
  31. Tuan, V.A., Huong, N.T., Viet, N.M. (2024). Novel B/ZnO material for enhanced degradation of tetracycline hydrochloride in an aqueous environment under visible light. Journal of Science & Technology, 60(3), 43-50. DOI: 10.57001/huih5804.2024.096
  32. Zhang, Y.Z.H., Zhang, D.B. (2007). Decolorization and mineralization of CI Reactive Black 8 by Fenton and ultrasound/Fenton method. Coloration Technology, 123, 101-105. DOI: 10.1111/j.1478-4408.2007.00069.x

Last update:

No citation recorded.

Last update:

No citation recorded.