skip to main content

Oligomerization of Fischer-Tropsch Olefins by Radical Initiation Method for Synthesizing Poly Olefin Base Oils

Research Institute "Nanotechnologies and New Materials", Platov South-Russian State Polytechnic University (NPI), Novocherkassk 346428, Russian Federation

Received: 27 Aug 2024; Revised: 16 Oct 2024; Accepted: 17 Oct 2024; Available online: 21 Oct 2024; Published: 30 Oct 2024.
Editor(s): Dmitry Yu. Murzin
Open Access Copyright (c) 2024 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

In the present work we have investigated the oligomerization process of Fischer-Tropsch synthesis products – gasoline (C5-C10) and diesel (C11-C18) hydrocarbon fractions with a total olefin content (consisting mainly olefins with a branched isomeric chain) of 79.3 and 31.8 wt.%, respectively. Oligomerization was carried out by radical initiation method using azobisisobutyronitrile, benzoyl peroxide, dicumyl peroxide and methyl ethyl ketone peroxide (Butanox M-50) as initiators. It was established that the yield of the oligomerization process depending on the initiator used decreases in the following order: azobisisobutyronitrile > benzoyl peroxide > dicumyl peroxide > Butanox M-50. It was determined that when the oligomerization is carried out in polar solvents such as acetone and dichloromethane the yield of product increases by ~2.1 and ~1.7 times, respectively, while at the same time adding a non-polar solvent such as tetrachloromethane to the reaction mixture decreases the product yield by ~2.0 times. The optimal technological parameters for carrying out oligomerization process of synthetic gasoline and diesel fractions were determined: where azobisisobutyronitrile, content 0.5 wt.%., is used as an initiator, acetone as solvent, with reaction temperature of 200 °C, and duration of 12 hrs. under inert atmosphere. The product yield from the diesel fraction is 39.5 %, and from the synthetic gasoline fraction – 36.0 %. At the same time, in terms of characteristics, the oligomerization product of the diesel fraction showed properties similar to commercially available Base oil 3cSt (Group III), and the gasoline fraction showed properties on par with the commercially produced PAO-2 (Group IV). Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Fischer-Tropsch synthesis; oligomerisation; olefins; polyolefin oils; radical polymerization; lubricant
Funding: Russian Science Foundation under contract Grant No. 23-23-00466

Article Metrics:

  1. Benda, R., Bullen, J., Plomer, A. (1996). Synthetics basics: Polyalphaolefins – base fluids for high‐performance lubricants. Journal of Synthetic Lubrication, 13(1), 41-57. DOI: 10.1002/jsl.3000130105
  2. Wu, M.M., Ho, S.C., Forbus, T.R. (2006). Synthetic lubricant base stock processes and products. Practical Advances in Petroleum Processing, 553-577
  3. Ray, S., Rao, P.V., Choudary, N.V. (2012). Poly‐α‐olefin‐based synthetic lubricants: a short review on various synthetic routes. Lubrication Science, 24(1), 23-44. DOI: 10.1002/ls.166
  4. Wu, M.M., Ho, S.C., Luo, S. (2017). Synthetic lubricant base stock. Springer Handbook of Petroleum Technology, 1043-1061. DOI: 10.1007/978-3-319-49347-3_35
  5. Hogg, J.M., Ferrer-Ugalde, A., Coleman, F., Swadźba-Kwaśny, M. (2019). Borenium ionic liquids as alternative to BF3 in polyalphaolefins (PAOs) synthesis. ACS Sustainable Chemistry & Engineering, 7(17), 15044-15052. DOI: 10.1021/acssuschemeng.9b03621
  6. Coffin, P.S., Lindsay, C.M., Mills, A.J., Lindenkamp, H., Fuhrmann, J. (1990). The application of synthetic fluids to automotive lubricant development: trends today and tomorrow. Journal of Synthetic Lubrication, 7(2), 123-143. DOI: 10.1002/jsl.3000070204
  7. Rudnick, L.R. (Ed.). (2020). Synthetics, Mineral Oils, and Bio-Based Lubricants: Chemistry and Technology. CRC press
  8. Hsu, C.S., Robinson, P.R., Hsu, C.S., Robinson, P.R. (2019). Lubricant processes and synthetic lubricants. Petroleum Science and Technology, 253-285. DOI: 10.1007/978-3-030-16275-7_13
  9. Hanifpour, A., Bahri-Laleh, N., Mohebbi, A., Nekoomanesh-Haghighi, M. (2022). Oligomerization of higher α-olefins to poly (α-olefins). Iranian Polymer Journal, 1-20. DOI: 10.1007/s13726-021-01011-x
  10. Cowley, M. (2007). Oligomerisation of alkenes by radical initiation. Organic Process Research & Development, 11(2), 286-288. DOI: 10.1021/op060253y
  11. Jiang, H., Yu, K. (2017). Catalytic polymerization of 1-decene using a silicon-bridged metallocene system. Petroleum Science and Technology, 35(14), 1451-1456. DOI: 10.1080/10916466.2017.1344706
  12. Nifant’ev, I.E., Vinogradov, A.A., Vinogradov, A.A., Sedov, I.V., Dorokhov, V.G., Lyadov, A.S., & Ivchenko, P.V. (2018). Structurally uniform 1-hexene, 1-octene, and 1-decene oligomers: Zirconocene/MAO-catalyzed preparation, characterization, and prospects of their use as low-viscosity low-temperature oil base stocks. Applied Catalysis A: General, 549, 40-50. DOI: 10.1016/j.apcata.2017.09.016
  13. Keim, W. (2013). Oligomerization of ethylene to α‐olefins: discovery and development of the shell higher olefin process (SHOP). Angewandte Chemie International Edition, 52(48), 12492-12496. DOI: 10.1002/anie.201305308
  14. Naji-Rad, E., Gimferrer, M., Bahri-Laleh, N., Nekoomanesh-Haghighi, M., Jamjah, R., Poater, A. (2018). Exploring basic components effect on the catalytic efficiency of Chevron-Phillips catalyst in ethylene trimerization. Catalysts, 8(6), 224. DOI: 10.3390/catal8060224
  15. Bursian, N.R., Kogan, S.B. (1989). Catalytic conversion of paraffinic hydrocarbons into isoparaffins and olefins. Russian Chemical Reviews, 58(3), 272. DOI: 10.1070/RC1989v058n03ABEH003439
  16. Dalin, M.A. (1984). Higher Olefins (Production and Application). Khimiya, Leningrad
  17. Pan, X., Jiao, F., Miao, D., Bao, X. (2021). Oxide–zeolite-based composite catalyst concept that enables syngas chemistry beyond Fischer–Tropsch synthesis. Chemical Reviews, 121(11), 6588-6609. DOI: 10.1021/acs.chemrev.0c01012
  18. Alsudani, F.T., Saeed, A.N., Ali, N.S., Majdi, H.S., Salih, H.G., Albayati, T.M., Cata Saady, N.M., Shakor, Z.M. (2023). Fisher–Tropsch Synthesis for Conversion of Methane into Liquid Hydrocarbons through Gas-to-Liquids (GTL) Process: A Review. Methane, 2(1), 24-43. DOI: 10.3390/methane2010002
  19. Marriott, J.N. (1986). Sasol process technology-the challenge of synfuels from coal. Chemsa; (South Africa), 12(8)
  20. de Klerk, A. (2006). Oligomerization of Fischer− Tropsch olefins to distillates over amorphous silica− alumina. Energy & Fuels, 20(5), 1799-1805. DOI: 10.1021/ef060169j
  21. Yakovenko, R.E., Savost'yanov, A.P., Narochniy, G.B., Soromotin, V.N., Zubkov, I.N., Papeta, O.P., Svetogorov, R.D., Mitchenko, S.A. (2020). Preliminary evaluation of a commercially viable Co-based hybrid catalyst system in Fischer–Tropsch synthesis combined with hydroprocessing. Catalysis Science & Technology, 10(22), 7613-7629. DOI: 10.1039/D0CY00975J
  22. Zubkov, I.N., Denisov, O.D., Timokhina, M.A., Savost'yanov, A.P., Yakovenko, R.E. (2024). Study of the influence of the gas circulation ratio on the production of C5–C18 alkenes in the Fischer–Tropsch synthesis. Kataliz v promyshlennosti. 24, 34-42. (in Russian). DOI: 10.18412/1816-0387-2024-2-34-42
  23. ASTM D7042-21a Standard Test Method for Dynamic Viscosity and Density of Liquids by Stabinger Viscometer (and the Calculation of Kinematic Viscosity) (2021)
  24. Matyjaszewski, K., & Davis, T. P. (2002). Handbook of Radical Polymerization. New York: Wiley-Interscience
  25. Rana, M.M., Rajeev, A., Natale, G., De la Hoz Siegler, H. (2021). Effects of synthesis-solvent polarity on the physicochemical and rheological properties of poly (N-isopropylacrylamide)(PNIPAm) hydrogels. Journal of Materials Research and Technology, 13, 769-786. DOI: 10.1016/j.jmrt.2021.05.009
  26. Shao, H., Gu, X., Wang, R., Wang, X., Jiang, T., Guo, X. (2020). Preparation of lubricant base stocks with high viscosity index through 1-decene oligomerization catalyzed by alkylaluminum chloride promoted by metal chloride. Energy & Fuels, 34(2), 2214-2220. DOI: 10.1021/acs.energyfuels.9b04104
  27. ExxonMobil SpectraSyn™ MaX 3.5 (1 August 2024). Citing Internet sources URL https://www.exxonmobilchemical.com
  28. Base oil 3cSt (Group III) (1 August 2024). Citing Internet sources URL https://buoyancyimpex.com
  29. Tatneft (1 August 2024). Citing Internet sources URL https://tatneft-maslo.narod.ru/files/production.html
  30. Taif-lubricants (1 August 2024). Citing Internet sources URL: https://taif-lubricants.ru/pao/pao/

Last update:

No citation recorded.

Last update:

No citation recorded.