skip to main content

Improving Photocatalytic Efficiency with Titanium Dioxide Quantum Dots

1School of Chemistry and Life Science, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Hai Ba Trung, Hanoi, Viet Nam

2National Key Laboratory for Petrochemical and Refinery Technology, 2 Pham Ngu Lao Street, Hoan Kiem District, Hanoi, Viet Nam

3School of Materials Science and Engineering, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Hai Ba Trung, Hanoi, Viet Nam

Received: 26 Jun 2024; Revised: 3 Aug 2024; Accepted: 4 Aug 2024; Available online: 25 Aug 2024; Published: 30 Oct 2024.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2024 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Titanium dioxide quantum dots (TiO2-QDs), synthesized using a microwave-assisted method, represent a significant advancement in photocatalysis, particularly in the treatment of environmental pollutants. This study focuses on TiO2-QDs synthesized at 200°C for a duration of 5 minutes, using titanium butoxide as a precursor. Characterization through TEM, XRD, PL, and UV-Vis-DRS analyses revealed uniform quantum dots with an average size of 5.28 nm, a bandgap energy of 3.22 eV, and a crystalline anatase phase, indicative of high photocatalytic activity. Notably, these TiO2-QDs demonstrated exceptional performance in degrading methylene blue (MB) in water, achieving a remarkable treatment efficiency of 97.6% in 120 min, significantly outperforming both conventional titanium dioxide nanoparticles and commercial titanium dioxide materials. The reaction conditions were evaluated based on factors such as catalyst dose, initial MB concentration, and pH. The results indicate that optimal degradation efficiency of MB was achieved at a pH of 7, with a catalyst dose of 0.15 g/L and at a low MB concentration. The efficiency slightly decreased to 94.5% after five reuse cycles, emphasizing its significant reusability and stability. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: TiO2 quantum dot; TiO2 photocatalyst; methylene blue treatment; microwave-assisted method
Funding: Ministry of Science and Technology, Vietnam I under grant number ĐTĐL.CN-67/19.

Article Metrics:

  1. Fujishima, A., Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238, 37–38 (1972). DOI: 10.1038/238037a0
  2. Nakata, K., Fujishima, A. (2012). TiO2 photocatalysis: Design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 13(3), 169–189. DOI: 10.1016/j.jphotochemrev.2012.06.001
  3. Xiu, Z., Xiu, Z., Guo, M., Zhao, T., Pan, K., Xing, Z., Li, Z., Zhou, W. (2022). Recent advances in Ti3+ self-doped nanostructured TiO2 visible light photocatalysts for environmental and energy applications. Chemical Engineering Journal, 382, 123011. DOI: 10.1016/j.cej.2019.123011
  4. Li, Z., Wang, S., Wu, J., Zhou, W. (2022). Recent progress in defective TiO2 photocatalysts for energy and environmental applications. Renewable and Sustainable Energy Reviews, 156, 111980. DOI: 10.1016/j.rser.2021.111980
  5. Zargar, R.A., Arora, M., Bhat, S.A., Mearaj, T., Manthrammel, M.A., Shkir, M. (2023). Growth of TiO2–CdO coated films: A brief study for optoelectronic applications. Journal of Physics and Chemistry of Solids, 179, 111390. DOI: 10.1016/j.jpcs.2023.111390
  6. Shaikh, Shoyebmohamad F., Sharifah Mohammed Ali Al-Moayid, Balaji G. Ghule, Mohd Shkir, Haitham Elhosiny Ali, Hamed Majdooa Algarni, Mohd Ubaidullah, and Rajaram S. Mane. "Nanocrystalline and mesoporous anatase TiO2 films composition and its synthesizing process thereof." U.S. Patent Application 18/175,920, filed July 6, 2023
  7. Herrmann, J.M. (1999). Heterogeneous photocatalysis: Fundamentals and applications to the removal of various types of aqueous pollutants. Catalysis Today, 53(1), 115–129. DOI: 10.1016/S0920-5861(99)00107-8
  8. Algadi, H., Albargi, H., Umar, A., Shkir, M. (2021). Enhanced photoresponsivity of anatase titanium dioxide (TiO2)/nitrogen-doped graphene quantum dots (N-GQDs) heterojunction-based photodetector. Advanced Composites and Hybrid Materials, 4(4), 1354–1366. DOI: 10.1007/s42114-021-00355-5
  9. Rajendran, R., Vignesh, S., Suganthi, S., Raj, V., Kavitha, G., Palanivel, B., Shkir, M., Algarni, H. (2022). g-C3N4/TiO2/CuO S-scheme heterostructure photocatalysts for enhancing organic pollutant degradation. Journal of Physics and Chemistry of Solids, 161, 110391. DOI: 10.1016/j.jpcs.2021.110391
  10. Gopinath, K.P., Madhav, N.V., Krishnan, A., Malolan, R., Rangarajan, G. (2020). Present applications of titanium dioxide for the photocatalytic removal of pollutants from water: A review. Journal of Environmental Management, 270, 110906. DOI: 10.1016/j.jenvman.2020.110906
  11. Chen, D., Cheng, Y., Zhou, N., Chen, P., Wang, Y., Li, K., Huo, S., Cheng, P., Peng, P., Zhang, R., Wang, L., Liu, H., Liu, Y., Ruan, R. (2020). Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A review. Journal of Cleaner Production, 268, 121725. DOI: 10.1016/j.jclepro.2020.121725
  12. Girija, R., Mary, S., Balakrishnan, G., Mariappan, S.M., Hamdy, M.S., Shkir, M. (2022). Noticeably Improved Visible Light Photocatalytic Activity of TiO2 Nanoparticles through co‐Doping of Activated Charcoal and Fe Towards Methylene Blue Degradation. ChemistrySelect, 7(5), e202103614. DOI: 10.1002/slct.202103614
  13. Vignesh, S., Chandrasekaran, S., Srinivasan, M., Anbarasan, R., Perumalsamy, R., Arumugam, E., Shkir, M., Algarni, H., Al Faify, S. (2022). TiO2-CeO2/g-C3N4 S-scheme heterostructure composite for enhanced photo-degradation and hydrogen evolution performance with combined experimental and DFT study. Chemosphere, 288, 132611. DOI: 10.1016/j.chemosphere.2021.132611
  14. Rajendran, R., Vignesh, S., Sasireka, A., Suganthi, S., Raj, V., Baskaran, P., Shkir, M., Al Faify, S. (2021). Designing Ag2O modified g-C3N4/TiO2 ternary nanocomposites for photocatalytic organic pollutants degradation performance under visible light: Synergistic mechanism insight. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 629, 127472. DOI: 10.1016/j.colsurfa.2021.127472
  15. Song, L., Jing, W., Chen, J., Zhang, S., Zhu, Y., Xiong, J. (2019). High reusability and durability of carbon-doped TiO2/carbon nanofibrous film as visible-light-driven photocatalyst. Journal of Materials Science, 54(5), 3795–3804. DOI: 10.1007/s10853-018-3105-7
  16. Zhu, Y., Xu, T., Zhao, D., Li, F., Liu, W., Wang, B., An, B. (2021). Adsorption and solid-phase photocatalytic degradation of perfluorooctane sulfonate in water using gallium-doped carbon-modified titanate nanotubes. Chemical Engineering Journal, 421(P1), 129676. DOI: 10.1016/j.cej.2021.129676
  17. Li, Y., Cheng, H., Wang, N., Zhou, S., Xie, D., Li, T. (2019). Annealing effects on the microstructure, magnetism and microwave-absorption properties of Fe/TiO2 nanocomposites. Journal of Magnetism and Magnetic Materials, 471, 346–354. DOI: 10.1016/j.jmmm.2018.09.101
  18. Liu, C., Dong, S., Chen, Y. (2019). Enhancement of visible-light-driven photocatalytic activity of carbon plane/g-C3N4/TiO2 nanocomposite by improving heterojunction contact. Chemical Engineering Journal, 371, 706–718. DOI: 10.1016/j.cej.2019.04.089
  19. Nasralla, N.H.S., Yeganeh, M., Astuti, Y., Piticharoenphun, S., Šiller, L. (2018). Systematic study of electronic properties of Fe-doped TiO2 nanoparticles by X-ray photoemission spectroscopy. Journal of Materials Science: Materials in Electronics, 29(20), 17956–17966. DOI: 10.1007/s10854-018-9911-5
  20. Nasralla, N., Yeganeh, M., Astuti, Y., Piticharoenphun, S., Shahtahmasebi, N., Kompany, A., Karimipour, M., Mendis, B.G., Poolton, N.R.J., Šiller, L. (2013). Structural and spectroscopic study of Fe-doped TiO2 nanoparticles prepared by sol-gel method. Scientia Iranica, 20(3), 1018–1022. DOI: 10.1016/j.scient.2013.05.017
  21. Sun, P., Xing, Z., Li, Z., Zhou, W. (2023). Recent advances in quantum dots photocatalysts. Chemical Engineering Journal, 458, 141399. DOI: 10.1016/j.cej.2023.141399
  22. Pandurangan, D.K., Mounika, S.K. (2012). Quantum dot aptamers-an emerging technology with wide scope in pharmacy. International Journal of Pharmacy and Pharmaceutical Sciences, 4, 24–31
  23. Xue, J., Wang, X., Jeong, J.H., Yan, X. (2020). Fabrication, photoluminescence and applications of quantum dots embedded glass ceramics. Chemical Engineering Journal, 383, 123082. DOI: 10.1016/j.cej.2019.123082
  24. Sood, S., Kumar, S., Umar, A., Kaur, A., Mehta, S.K., Kansal, S.K. (2015). TiO2 quantum dots for the photocatalytic degradation of indigo carmine dye. Journal of Alloys and Compounds, 650, 193–198. DOI: 10.1016/j.jallcom.2015.07.164
  25. Javed, S., Islam, M., Mujahid, M. (2019). Synthesis and characterization of TiO2 quantum dots by sol gel reflux condensation method. Ceramics International, 45(2), 2676–2679. DOI: 10.1016/j.ceramint.2018.10.163
  26. Deng, Q., Zhang, W., Lan, T., Xie, J., Xie, W., Liu, Z., Huang, Y., Wei, M. (2018). Anatase TiO2 Quantum Dots with a Narrow Band Gap of 2.85 eV Based on Surface Hydroxyl Groups Exhibiting Significant Photodegradation Property. European Journal of Inorganic Chemistry, 2018(13), 1506–1510. DOI: 10.1002/ejic.201800097
  27. Gnanasekaran, L., Hemamalini, R., Ravichandran, K. (2015). Synthesis and characterization of TiO2 quantum dots for photocatalytic application. Journal of Saudi Chemical Society, 19(5), 589–594. DOI: 10.1016/j.jscs.2015.05.002
  28. Pandey, S.K., Bhatnagar, A., Shukla, V., Kesarwani, R., Deshpandey, U., Yadav, T.P. (2021). Catalytic mechanism of TiO2 quantum dots on the de/re-hydrogenation characteristics of magnesium hydride. International Journal of Hydrogen Energy, 46(75), 37340–37350. DOI: 10.1016/j.ijhydene.2021.09.006
  29. Wu, Z.G., Ren, Z.M., Li, L., Lv, L., Chen, Z. (2020). Hydrothermal synthesis of TiO2 quantum dots with mixed titanium precursors. Separation and Purification Technology, 251, 117328. DOI: 10.1016/j.seppur.2020.117328
  30. Shim, Y.J., Choi, G.J. (2016). Characterization of TiO2 quantum dots synthesized by hydrothermal method. Transactions on Electrical and Electronic Materials, 17(2), 125–127. DOI: 10.4313/TEEM.2016.17.2.125
  31. Danish, R., Ahmed, F., Koo, B.H. (2014). Rapid synthesis of high surface area anatase Titanium Oxide quantum dots. Ceramics International, 40(8), 12675–12680. DOI: 10.1016/j.ceramint.2014.04.115
  32. Vu, T.H.T., Lam, T.T., Dao, D.N., Van, D.A., Huynh, T.H. (2023). A Composite of TiO2 Quantum Dots and TiO2 Nanoparticles Coated on Anti-Bumping Glass Beads (TiO2QDs-TiO2NPs/GBs), with a Very Low Content of TiO2 as a High Performance Photocatalyst. Journal of Chemistry, 2023, 3400175. DOI: 10.1155/2023/3400175
  33. Liu, B., Zhao, X., Wen, L. (2006). The structural and photoluminescence studies related to the surface of the TiO2 sol prepared by wet chemical method. Materials Science and Engineering: B, 134(1), 27–31. DOI: 10.1016/j.mseb.2006.06.052
  34. Valencia, S., Marín, J.M., Restrepo, G. (2009). Study of the bandgap of synthesized titanium dioxide nanoparticules using the sol-gel method and a hydrothermal treatment. The Open Materials Science Journal, 4, 9–14. DOI: 10.2174/1874088X01004010009
  35. Danish, R., Ahmed, F., Koo, B.H. (2014). Rapid synthesis of high surface area anatase Titanium Oxide quantum dots. Ceramics International, 40(8), 12675–12680. DOI: 10.1016/j.ceramint.2014.04.115
  36. Li, Z., Wang, S., Wu, J., Zhou, W. (2022). Recent progress in defective TiO2 photocatalysts for energy and environmental applications. Renewable and Sustainable Energy Reviews, 156, 111980. DOI: 10.1016/j.rser.2021.111980
  37. Kaur, A., Umar, A., Kansal, S.K. (2015). Sunlight-driven photocatalytic degradation of non-steroidal anti-inflammatory drug based on TiO2 quantum dots. Journal of Colloid and Interface Science, 459, 257–263. DOI: 10.1016/j.jcis.2015.08.010
  38. Martin, M.V., Villabrille, P.I., Rosso, J.A. (2015). The influence of Ce doping of titania on the photodegradation of phenol. Environmental Science and Pollution Research, 22(18), 14291–14298. DOI: 10.1007/s11356-015-4667-4
  39. Maletić, M., Vukčević, M., Kalijadis, A., Janković-Častvan, I., Dapčević, A., Laušević, Z., Laušević, M. (2019). Hydrothermal synthesis of TiO2/carbon composites and their application for removal of organic pollutants. Arabian Journal of Chemistry, 12(8), 4388–4397. DOI: 10.1016/j.arabjc.2016.06.020
  40. Saravanan, R., Gupta, V.K., Narayanan, V., Stephen, A. (2013). Comparative study on photocatalytic activity of ZnO prepared by different methods. Journal of Molecular Liquids, 181. 133–141. DOI: 10.1016/j.molliq.2013.02.023
  41. Widiyandari, H., Prilita, O., Al Ja'farawy, M.S., Nurosyid, F., Arutanti, O., Astuti, Y., Mufti, N. (2023). Nitrogen-doped carbon quantum dots supported zinc oxide (ZnO/N-CQD) nanoflower photocatalyst for methylene blue photodegradation. Results in Engineering, 17, 100814. DOI: 10.1016/j.rineng.2022.100814
  42. Akpan, U.G., Hameed, B.H. (2009). Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: A review. Journal of Hazardous Materials, 170(2–3), 520–529. DOI: 10.1016/j.jhazmat.2009.05.039
  43. Abdellah, M.H., Nosier, S.A., El-Shazly, A.H., Mubarak, A.A. (2018). Photocatalytic decolorization of methylene blue using TiO2/UV system enhanced by air sparging. Alexandria Engineering Journal, 57(4), 3727–3735. DOI: 10.1016/j.aej.2018.07.018
  44. Salehi, M., Hashemipour, H., Mirzaee, M. (2012). Experimental Study of Influencing Factors and Kinetics in Catalytic Removal of Methylene Blue with TiO2 Nanopowder. American Journal of Environmental Engineering, 2(1), 1–7. DOI: 10.5923/j.ajee.20120201.01
  45. Zhang, S., Zhang, J., Sun, J., Tang, Z. (2020). Capillary microphotoreactor packed with TiO2-coated glass beads: An efficient tool for photocatalytic reaction. Chemical Engineering and Processing - Process Intensification, 147, 107746. DOI: 10.1016/j.cep.2019.107746
  46. Sonu, K., Puttaiah, S.H., Raghavan, V.S., Gorthi, S.S. (2021). Photocatalytic degradation of MB by TiO2: studies on recycle and reuse of photocatalyst and treated water for seed germination. Environmental Science and Pollution Research, 28(35), 48742–48753. DOI: 10.1007/s11356-021-13863-0

Last update:

No citation recorded.

Last update:

No citation recorded.