skip to main content

Utilization of Silica Gel for the Synthesis of Geranyl Laurate and Citronellyl Laurate

Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Pondok Cina, Beji, Depok City, West Java, 16424, Indonesia

Received: 17 May 2024; Revised: 20 Jun 2024; Accepted: 21 Jun 2024; Available online: 8 Jul 2024; Published: 30 Aug 2024.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2024 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract
Geraniol and citronellol are monoterpenoid alcohols with diverse pharmacological activities. This research focuses on synthesized of geranyl laurate and citronellyl laurate using silica gel as an esterification catalyst. The FTIR peak spectra of silica gel showed that Si-OH, Si-O-Si group were observed. XRD showed that the silica gel is an amorphous phase. The reaction was conducted under reflux using a Dean–Stark trap. The reaction was monitored by TLC and then the product was purified using column chromatography. This work reported that silica gel can be utilized as a catalyst for preparing geranyl laurate and citronellyl laurate which proven by the spectra of FTIR, 1H-NMR, and 13C-NMR of the geranyl laurate and citronellyl laurate formed. The IR spectra of geranyl laurate and citronellyl laurate showed the presence of a carbonyl group (C=O) at 1744-1745 cm-1 and C-O from ester at 1170-1176 cm-1. The peak number and its chemical shift on 1H-NMR and 13C-NMR spectra further verified the structure of geranyl laurate and citronelyl laurate. In conclusion, silica gel can be utilized as a catalyst for preparing geranyl laurat and citronellyl laurate. Therefore a silica gel-based catalyst is promising to be developed for esterification applications.
Keywords: Silica Gel; Esterification; Dean-Stark Trap; Geranyl laurate; Citronellyl laurate
Funding: Universitas Indonesia

Article Metrics:

  1. Kusmana, C., Hikmat, A. (2015). The Biodiversity of Flora in Indonesia. Journal of Natural Resources and Environmental Management, 5(2), 187–198. DOI: 10.19081/jpsl.5.2.187
  2. Rf Lins, L.C., Santos, I.M.A., de Melo, M.S., Menezes, P. dos P., S Araújo, A.A., Nunes, R. de S., Dos Santos, M.R.V., de Medeiros, I.A., Ribeiro, E.A.N., dos Santos, J.R., Marchioro, M. (2014). The anticonvulsant effect of geraniol and inclusion complex geraniol: β –cyclodextrin. Boletin Latinoamericano y del Caribe de Plantas Medicinales y Aromaticas, 13(6), 557–565
  3. Abdoul-latif, F.M., Ainane, A., Aboubaker, I.H., Mohamed, J. (2023). Exploring the Potent Anticancer Activity of Essential Oils and Their Bioactive Compounds : Mechanisms and Prospects for Future Cancer Therapy
  4. Chen, W., Viljoen, A.M. (2022). Geraniol – A review update. South African Journal of Botany, 150, 1205–1219. DOI: 10.1016/j.sajb.2022.09.012
  5. Chen, W., Viljoen, A.M. (2010). Geraniol - A review of a commercially important fragrance material. South African Journal of Botany, 76(4), 643–651. DOI: 10.1016/j.sajb.2010.05.008
  6. Qi, F., Yan, Q., Zheng, Z., Liu, J., Chen, Y., Zhang, G. (2018). Geraniol and geranyl acetate induce potent anticancer effects in colon cancer Colo-205 cells by inducing apoptosis, DNA damage and cell cycle arrest. Journal of BUON, 23(2), 346–352
  7. Lira, M.H.P. de, Andrade Júnior, F.P. de, Moraes, G.F.Q., Macena, G. da S., Pereira, F. de O., Lima, I.O. (2020). Antimicrobial activity of geraniol: an integrative review. Journal of Essential Oil Research, 32(3), 187–197. DOI: 10.1080/10412905.2020.1745697
  8. Ben Ammar, R. (2023). Potential Effects of Geraniol on Cancer and Inflammation-Related Diseases: A Review of the Recent Research Findings. Molecules, 28(9) DOI: 10.3390/molecules28093669
  9. Cho, M., So, I., Chun, J.N., Jeon, J.H. (2016). The antitumor effects of geraniol: Modulation of cancer hallmark pathways (Review). International Journal of Oncology, 48(5), 1772–1782. DOI: 10.3892/ijo.2016.3427
  10. Ahmad Kamal, H.Z., Tuan Ismail, T.N.N., Arief, E.M., Ponnuraj, K.T. (2020). Antimicrobial activities of citronella (Cymbopogon nardus) essential oil against several oral pathogens and its volatile compounds. Padjadjaran Journal of Dentistry, 32(1), 1. DOI: 10.24198/pjd.vol32no1.24966
  11. Srinivasan, S., Muruganathan, U. (2016). Antidiabetic efficacy of citronellol, a citrus monoterpene by ameliorating the hepatic key enzymes of carbohydrate metabolism in streptozotocin-induced diabetic rats. Chemico-Biological Interactions, 250, 38–46. DOI: 10.1016/j.cbi.2016.02.020
  12. Yu, W.N., Lai, Y.J., Ma, J.W., Ho, C.T., Hung, S.W., Chen, Y.H., Chen, C.T., Kao, J.Y., Way, T. Der (2019). Citronellol induces necroptosis of human lung cancer cells via TNF-α pathway and reactive oxygen species accumulation. In Vivo, 33(4), 1193–1201. DOI: 10.21873/invivo.11590
  13. Widiyarti, G., Megawati, M., Hanafi, M. (2019). The Potential use of Geraniol Esters from Citronella Oil as Anticancer Agents. Oriental Journal of Chemistry, 35(3), 987–996. DOI: 10.13005/ojc/350310
  14. Widiyarti, G., Hanafi, M., Kosela, S., Budianto, E. (2016). Cytotoxic activity of citronellyl caproate on murine leukemia (P388) cells. International Journal of Applied Chemistry, 12(3), 209–220
  15. Dayrit, F.M. (2015). The Properties of Lauric Acid and Their Significance in Coconut Oil. Journal of the American Oil Chemists’ Society, 92(1), 1–15. DOI: 10.1007/s11746-014-2562-7
  16. Fessenden, R.J., Fessenden, J.S. (1982). Organic Chemistry, Second Edition. United States of America: Willard Grant Press
  17. Jyoti, G., Keshav, A., Anandkumar, J., Bhoi, S. (2018). Homogeneous and Heterogeneous Catalyzed Esterification of Acrylic Acid with Ethanol: Reaction Kinetics and Modeling. International Journal of Chemical Kinetics, 50(5), 370–380. DOI: 10.1002/kin.21167
  18. Khan, Z., Javed, F., Shamair, Z., Hafeez, A., Fazal, T., Aslam, A., Zimmerman, W.B., Rehman, F. (2021). Current developments in esterification reaction: A review on process and parameters. Journal of Industrial and Engineering Chemistry, 103(xxxx), 80–101. DOI: 10.1016/j.jiec.2021.07.018
  19. Faruque, M.O., Razzak, S.A., Hossain, M.M. (2020). Application of heterogeneous catalysts for biodiesel production from microalgal oil—a review. Catalysts, 10(9), 1–25. DOI: 10.3390/catal10091025
  20. Mohammadi Ziarani, G., Lashgari, N., Badiei, A. (2015). Sulfonic acid-functionalized mesoporous silica (SBA-Pr-SO3H) as solid acid catalyst in organic reactions. Journal of Molecular Catalysis A: Chemical, 397, 166–191. DOI: 10.1016/j.molcata.2014.10.009
  21. Comerford, J.W., Clark, J.H., Macquarrie, D.J., Breeden, S.W. (2009). Clean , reusable and low cost heterogeneous catalyst for amide synthesis w. 2562–2564. DOI: 10.1039/b901581g
  22. Komura, K., Nakano, Y., Koketsu, M. (2011). Green Chemistry Mesoporous silica MCM-41 as a highly active , recoverable and reusable catalyst for direct amidation of fatty acids and long-chain amines †. 828–831. DOI: 10.1039/c0gc00673d
  23. Ojeda-Porras, A., Hernández-Santana, A., Gamba-Sánchez, D. (2015). Direct amidation of carboxylic acids with amines under microwave irradiation using silica gel as a solid support. Green Chemistry, 17(5), 3157–3163. DOI: 10.1039/c5gc00189g
  24. Chandrashekhar, V.G., Senthamarai, T., Kadam, R.G., Malina, O., Kašlík, J., Zbořil, R., Gawande, M.B., Jagadeesh, R. V., Beller, M. (2022). Silica-supported Fe/Fe–O nanoparticles for the catalytic hydrogenation of nitriles to amines in the presence of aluminium additives. Nature Catalysis, 5(1), 20–29. DOI: 10.1038/s41929-021-00722-x
  25. Zou, Y., Chen, C., Chen, X., Zhang, X., Rao, W. (2017). Silica Gel Mediated Friedel–Crafts Alkylation of 3-Indolylmethanols with Indoles: Synthesis of Unsymmetrical Bis(3-indolyl)methanes. European Journal of Organic Chemistry, 2017(16), 2266–2271. DOI: 10.1002/ejoc.201700088
  26. Silverstein, R.M., Webster, F.X., Kiemle, D. (2005). Spectrometric Identification of Organic Compounds. 7th Edition. New York: John Wiley & Sons
  27. Tessema, B., Gonfa, G., Mekuria, S. (2024). Synthesis and Characterization of Modified Silica Gel from Teff Straw Ash Using Sol-gel Method. Next Materials, 3(September 2023), 100146. DOI: 10.1016/j.nxmate.2024.100146
  28. Yang, X.D., Zeng, X.H., Zhao, Y.H., Wang, X.Q., Pan, Z.Q., Li, L., Zhang, H. Bin (2010). Silica gel-mediated amide bond formation: An environmentally benign method for liquid-phase synthesis and cytotoxic activities of amides. Journal of Combinatorial Chemistry, 12(3), 307–310. DOI: 10.1021/cc900135f
  29. Panda, S.K., Al-Qunaysi, T.A., Al Taha, M., Kearney, D.J. (2021). Size exclusion chromatography of petroleum samples using amino-bonded silica phase. Fuel, 302(January), 120914. DOI: 10.1016/j.fuel.2021.120914
  30. Günther, H. (2013). NMR Spectroscopy: Basic Principles, Concepts and Applications in Chemistry, 3rd Edition. Wiley-VCH
  31. Miura, M., Kubota, Y., Iwaki, T., Takimoto, K., Muraoka, Y., Miura, M., Kubota, Y. (1963). Nature of Acid Sites on the Surface of Silica-alumina. The relation between the Acid Property of Sites and the Heat of Immersion. Bulletin of The Chemical Society of Japan, 42(6), 1476–1480

Last update:

No citation recorded.

Last update:

No citation recorded.