skip to main content

A Facile and Rapid Immobilization Method of Titanium Dioxide-Alginate Composite for The Photocatalytic Removal of Reactive Black-5

1School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor, Malaysia

2College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China

3Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Sepang, Selangor, 43900, Malaysia

Received: 21 Feb 2024; Revised: 12 Apr 2024; Accepted: 15 Apr 2024; Available online: 24 Apr 2024; Published: 30 Aug 2024.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2024 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

A facile and rapid approach to immobilize nano-sized titanium dioxide (TiO2) using a renewable biopolymer (i.e. alginate) has been successfully demonstrated. TiO2 exhibits a positively charged surface in acidic environment due to the presence of hydroxyl groups. Meanwhile, alginate polymer is negatively charged at any pH due to the presence of carboxylic group in the polymer chain. The negatively charged alginate polymer and positively charged TiO2 formed composite instantaneously when the alginate polymer was introduced into the TiO2 nanoparticles suspension. The TiO2-alginate (TiO2-A) composite photocatalyst was characterized using thermogravimetric analysis (TGA), field emission-scanning electron microscopy (FE-SEM) coupled with energy dispersive X-ray (EDX) analysis and Fourier Transform Infrared (FTIR). Thermogravimetric analysis indicated that incorporating TiO2 into sodium alginate increases its decomposition temperature due to the stability of TiO2 at elevated temperatures, with the TiO2 content estimated in the composite being 55.6%, lower than the theoretical calculation of 62.8%. FTIR analysis revealed a shift in the peak of the carboxylic group of sodium alginate, suggesting composite formation through electrostatic interactions with TiO2 nanoparticles, while FESEM analysis showed that the TiO2-A composite surface exhibited more pores compared to protonated alginate. The TiO2-A composite was able to remove 90% of the Reactive Black 5 (RB5) in less than 200 min under Ultra-violet (UV) illumination. The optimal pH to remove RB5 was found to be pH 2 due strong electrostatic attraction of negatively charged RB5 on the positive surface of TiO2 nanoparticles. The photocatalyst can be recovered by simple separation method, i.e. gravitational settling, and reused for 10 consecutive cycles with efficiency greater than 90% consistently. The TiO2-A composite is a promising immobilized photocatalyst for practical application in wastewater treatment. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Alginate; TiO2; Biopolymer; Rapid immobilization; Photocatalyst
Funding: Ministry of Higher Education Malaysia under contract Fundamental Research Grant Scheme (FRGS/1/2022/TK09/XMU/02/3); Xiamen University Malaysia under contract (XMUMRF/2019-C4/IENG/0018)

Article Metrics:

  1. Nasralla, N.H.S., Yeganeh, M., Astuti, Y., Piticharoenphun, S., Šiller, L. (2018). Systematic study of electronic properties of Fe-doped TiO2 nanoparticles by X-ray photoemission spectroscopy. Journal of Materials Science: Materials in Electronics, 29(20), 17956–17966. DOI: 10.1007/s10854-018-9911-5
  2. Nasralla, N., Yeganeh, M., Astuti, Y., Piticharoenphun, S., Shahtahmasebi, N., Kompany, A., Karimipour, M., Mendis, B.G., Poolton, N.R.J., Šiller, L. (2013). Structural and spectroscopic study of Fe-doped TiO2 nanoparticles prepared by sol–gel method. Scientia Iranica, 20(3), 1018–1022. DOI: 10.1016/j.scient.2013.05.017
  3. Nemiwal, M., Zhang, T.C., Kumar, D. (2021). Recent progress in g-C3N4, TiO2 and ZnO based photocatalysts for dye degradation: Strategies to improve photocatalytic activity. Science of The Total Environment, 767, 144896. DOI: 10.1016/j.scitotenv.2020.144896
  4. Nur, A.S.M., Sultana, M., Mondal, A., Islam, S., Robel, F.N., Islam, A., Sumi, M.S.A. (2022). A review on the development of elemental and codoped TiO2 photocatalysts for enhanced dye degradation under UV–vis irradiation. Journal of Water Process Engineering, 47, 102728. DOI: 10.1016/j.jwpe.2022.102728
  5. González-Burciaga, L.A., Núñez-Núñez, C.M., Proal-Nájera, J.B. (2022). Challenges of TiO2 heterogeneous photocatalysis on cytostatic compounds degradation: state of the art. Environmental Science and Pollution Research, 29(28), 42251–42274. DOI: 10.1007/s11356-021-17241-8
  6. Liu, Y., Xiang, Y., Xu, H., Li, H. (2022). The reuse of nano-TiO2 under different concentration of CO32– using coagulation process and its photocatalytic ability in treatment of methyl orange. Separation and Purification Technology, 282, 120152. DOI: 10.1016/j.seppur.2021.120152
  7. Bathula, C., Rabani, I., Sekar, S., Youi, H.-K., Choy, J.-Y., Kadam, A., Shretha, N.K., Seo, Y.-S., Kim, H.-S. (2021). Enhanced removal of organic dye by activated carbon decorated TiO2 nanoparticles from Mentha Aquatica leaves via ultrasonic approach. Ceramics International, 47(6), 8732–8739. DOI: 10.1016/j.ceramint.2020.12.282
  8. Lee, J., Seong, S., Jin, S., Jeong, Y., Noh, J. (2021). Synergetic photocatalytic-activity enhancement of lanthanum doped TiO2 on halloysite nanocomposites for degradation of organic dye. Journal of Industrial and Engineering Chemistry, 100, 126–133. DOI: 10.1016/j.jiec.2021.05.029
  9. Bahrudin, N.N. (2022). Evaluation of degradation kinetic and photostability of immobilized TiO2/activated carbon bilayer photocatalyst for phenol removal. Applied Surface Science Advances, 7, 100208. DOI: 10.1016/j.apsadv.2021.100208
  10. Wang, X., Xuan, X., Wang, Y., Li, X., Huang, H., Zhang, X., Du, X. (2021). Nano-Au-modified TiO2 grown on dendritic porous silica particles for enhanced CO2 photoreduction. Microporous and Mesoporous Materials, 310, 110635. DOI: 10.1016/j.micromeso.2020.110635
  11. Ji, H., Liu, W., Sun, F., Huang, T., Chen, L., Liu, Y., Qi, J., Xie, C., Zhao, D. (2021). Experimental evidences and theoretical calculations on phenanthrene degradation in a solar-light-driven photocatalysis system using silica aerogel supported TiO2 nanoparticles: Insights into reactive sites and energy evolution. Chemical Engineering Journal, 419, 129605. DOI: 10.1016/j.cej.2021.129605
  12. Suárez, S., Jansson, I., Ohtani, B., Sánchez, B. (2019). From titania nanoparticles to decahedral anatase particles: Photocatalytic activity of TiO2/zeolite hybrids for VOCs oxidation. Catalysis Today, 326, 2–7. DOI: 10.1016/j.cattod.2018.09.004
  13. Munguti, L.K., Dejene, F.B., Muthee, D.K. (2023). Zeolite Na-A supported TiO2: Effects of TiO2 loading on structural, optical and adsorption properties. Materials Science and Engineering: B, 289, 116281. DOI: 10.1016/j.mseb.2023.116281
  14. Wu, A., Wang, D., Wei, C., Zhang, X., Liu, Z., Feng, P., Ou, X., Qiang, Y., Garcia, H., Niu, J. (2019). A comparative photocatalytic study of TiO2 loaded on three natural clays with different morphologies. Applied Clay Science, 183, 105352. DOI: 10.1016/j.clay.2019.105352
  15. Dlamini, M.C., Maubane-Nkadimeng, M.S., Moma, J.A. (2021). The use of TiO2/clay heterostructures in the photocatalytic remediation of water containing organic pollutants: A review. Journal of Environmental Chemical Engineering, 9(6), 106546. DOI: 10.1016/j.jece.2021.106546
  16. Sandhu, S., Krishnan, S., Karim, A. V, Shriwastav, A. (2020). Photocatalytic denitrification of water using polystyrene immobilized TiO2 as floating catalyst. Journal of Environmental Chemical Engineering, 8(6), 104471. DOI: 10.1016/j.jece.2020.104471
  17. El-Mekkawi, D.M., Abdelwahab, N.A., Mohamed, W.A.A., Taha, N.A., Abdel-Mottaleb, M.S.A. (2020). Solar photocatalytic treatment of industrial wastewater utilizing recycled polymeric disposals as TiO2 supports. Journal of Cleaner Production, 249, 119430. DOI: 10.1016/j.jclepro.2019.119430
  18. Ali, H.M., Arabpour Roghabadi, F., Ahmadi, V. (2023). Solid-supported photocatalysts for wastewater treatment: Supports contribution in the photocatalysis process. Solar Energy, 255, 99–125. DOI: 10.1016/j.solener.2023.03.032
  19. Kandathil, V., Kempasiddaiah, M., B. S., S., Patil, S.A. (2019). From agriculture residue to catalyst support; A green and sustainable cellulose-based dip catalyst for CC coupling and direct arylation. Carbohydrate Polymers, 223, 115060. DOI: 10.1016/j.carbpol.2019.115060
  20. Musa, Y., Bwatanglang, I.B. (2020). Chapter 6 - Current role and future developments of biopolymers in green and sustainable chemistry and catalysis. In: Mohammad, F., Al-Lohedan, H.A., Jawaid, M. (eds) Sustainable Nanocellulose and Nanohydrogels from Natural Sources. Elsevier, pp. 131–154. DOI: 10.1016/B978-0-12-816789-2.00006-7
  21. Mohd Adnan, M.A., Phoon, B.L., Muhd Julkapli, N. (2020). Mitigation of pollutants by chitosan/metallic oxide photocatalyst: A review. Journal of Cleaner Production, 261, 121190. DOI: 10.1016/j.jclepro.2020.121190
  22. Liu, G., Pan, X., Li, J., Li, C., Ji, C. (2021). Facile preparation and characterization of anatase TiO2/nanocellulose composite for photocatalytic degradation of methyl orange. Journal of Saudi Chemical Society, 25(12), 101383. DOI: 10.1016/j.jscs.2021.101383
  23. Balakrishnan, A., Appunni, S., Chinthala, M., Vo, D.-V.N. (2022). Biopolymer-supported TiO2 as a sustainable photocatalyst for wastewater treatment: a review. Environmental Chemistry Letters, 20(5), 3071–3098. DOI: 10.1007/s10311-022-01443-8
  24. Dalponte Dallabona, I., Mathias, Á.L., Jorge, R.M.M. (2021). A new green floating photocatalyst with Brazilian bentonite into TiO2/alginate beads for dye removal. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 627, 127159. DOI: 10.1016/j.colsurfa.2021.127159
  25. Isik, Z., Bilici, Z., Adiguzel, S.K., Yatmaz, H.C., Dizge, N. (2019). Entrapment of TiO2 and ZnO powders in alginate beads: Photocatalytic and reuse efficiencies for dye solutions and toxicity effect for DNA damage. Environmental Technology & Innovation, 14, 100358. DOI: 10.1016/j.eti.2019.100358
  26. Shehzad, H., Ahmed, E., Sharif, A., Farooqi, Z.H., Din, M.I., Begum, R., Liu, Z., Zhou, L., Ouyang, J., Irfan, A., Nawaz, I. (2022). Modified alginate-chitosan-TiO2 composites for adsorptive removal of Ni(II) ions from aqueous medium. International Journal of Biological Macromolecules, 194, 117–127. DOI: 10.1016/j.ijbiomac.2021.11.140
  27. El-Sheekh, M.M., Deyab, M.A., Hassan, N.I., Abu Ahmed, S.E. (2022). Green biosynthesis of silver nanoparticles using sodium alginate extracted from Sargassum latifolium and their antibacterial activity. Rendiconti Lincei Scienze Fisiche e Naturali, 33(4), 867–878. DOI: 10.1007/s12210-022-01102-8
  28. La Zara, D., Bailey, M.R., Hagedoorn, P.-L., Benz, D., Quayle, M.J., Folestad, S., van Ommen, J.R. (2020). Sub-nanoscale Surface Engineering of TiO2 Nanoparticles by Molecular Layer Deposition of Poly(ethylene terephthalate) for Suppressing Photoactivity and Enhancing Dispersibility. ACS Applied Nano Materials, 3(7), 6737–6748. DOI: 10.1021/acsanm.0c01158
  29. Paşcalău, V., Popescu, V., Popescu, G.L., Dudescu, M.C., Borodi, G., Dinescu, A., Perhaiţa, I., Paul, M. (2012). The alginate/k-carrageenan ratio’s influence on the properties of the cross-linked composite films. Journal of Alloys and Compounds, 536, S418–S423. DOI: 10.1016/j.jallcom.2011.12.026
  30. Wang, S., Huang, X., Elimelech, M. (2020). Complexation between dissolved silica and alginate molecules: Implications for reverse osmosis membrane fouling. Journal of Membrane Science, 605, 118109. DOI: 10.1016/j.memsci.2020.118109
  31. AlShammari, A.S., Halim, M.M., Yam, F.K., Kaus, N.H.M. (2020). Synthesis of Titanium Dioxide (TiO2)/Reduced Graphene Oxide (rGO) thin film composite by spray pyrolysis technique and its physical properties. Materials Science in Semiconductor Processing, 116, 105140. DOI: 10.1016/j.mssp.2020.105140
  32. Ong, W.-J., Tan, L.-L., Chai, S.-P., Yong, S.-T., Mohamed, A.R. (2014). Self-assembly of nitrogen-doped TiO2 with exposed {001} facets on a graphene scaffold as photo-active hybrid nanostructures for reduction of carbon dioxide to methane. Nano Research, 7(10), 1528–1547. DOI: 10.1007/s12274-014-0514-z
  33. Pathak, T., Kim, J., Lee, S.-J., Baek, D.-J., Paeng, K.-J. (2008). Preparation of Alginic Acid and Metal Alginate from Algae and their Comparative Study. Journal of Polymers and the Environment, 16(3), 198–204. DOI: 10.1007/s10924-008-0097-4
  34. Tryba, B., Rychtowski, P., Srenscek-Nazzal, J., Przepiorski, J. (2020). The inflence of TiO2 structure on the complete decomposition of acetaldehyde gas. Materials Research Bulletin, 126, 110816. DOI: 10.1016/j.materresbull.2020.110816
  35. García-Contreras, L.A., Flores-Flores, J.O., Arenas-Alatorre, J.Á., Chávez-Carvayar, J.Á. (2022). Synthesis, characterization and study of the structural change of nanobelts of TiO2 (H2Ti3O7) to nanobelts with anatase, brookite and rutile phases. Journal of Alloys and Compounds, 923, 166236. DOI: 10.1016/j.jallcom.2022.166236
  36. Zare, M.H., Mehrabani-Zeinabad, A. (2022). Photocatalytic activity of ZrO2/TiO2/Fe3O4 ternary nanocomposite for the degradation of naproxen: characterization and optimization using response surface methodology. Scientific Reports, 12(1), 10388. DOI: 10.1038/s41598-022-14676-y
  37. Tekin, D., Kiziltas, H., Ungan, H. (2020). Kinetic evaluation of ZnO/TiO2 thin film photocatalyst in photocatalytic degradation of Orange G. Journal of Molecular Liquids, 306, 112905. DOI: 10.1016/j.molliq.2020.112905
  38. Tichapondwa, S.M., Newman, J.P., Kubheka, O. (2020). Effect of TiO2 phase on the photocatalytic degradation of methylene blue dye. Physics and Chemistry of the Earth, Parts A/B/C, 118–119, 102900. DOI: 10.1016/j.pce.2020.102900
  39. Upadhyay, G.K., Rajput, J.K., Pathak, T.K., Swart, H.C., Purohit, L.P. (2020). Photoactive CdO:TiO2 nanocomposites for dyes degradation under visible light. Materials Chemistry and Physics, 253, 123191. DOI: 10.1016/j.matchemphys.2020.123191
  40. Yang, K., Liu, Y., Li, Y., Cao, Z., Zhou, C., Wang, Z., Zhou, X., Baig, S.A., Xu, X. (2019). Applications and characteristics of Fe-Mn binary oxides for Sb(V) removal in textile wastewater: Selective adsorption and the fixed-bed column study. Chemosphere, 232, 254–263. DOI: 10.1016/j.chemosphere.2019.05.194
  41. Phuinthiang, P., Kajitvichyanukul, P. (2018). Degradation of paraquat from contaminated water using green TiO2 nanoparticles synthesized from Coffea arabica L. in photocatalytic process. Water Science and Technology, 79(5), 905–910. DOI: 10.2166/wst.2018.493
  42. Liu, M., Yin, W., Qian, F.-J., Zhao, T.-L., Yao, Q.-Z., Fu, S.-Q., Zhou, G.-T. (2020). A novel synthesis of porous TiO2 nanotubes and sequential application to dye contaminant removal and Cr(VI) visible light catalytic reduction. Journal of Environmental Chemical Engineering, 8(5), 104061. DOI: 10.1016/j.jece.2020.104061
  43. Dalponte, I., de Sousa, B.C., Mathias, A.L., Jorge, R.M.M. (2019). Formulation and optimization of a novel TiO2/calcium alginate floating photocatalyst. International Journal of Biological Macromolecules, 137, 992–1001. DOI: 10.1016/j.ijbiomac.2019.07.020
  44. Gjipalaj, J., Alessandri, I. (2017). Easy recovery, mechanical stability, enhanced adsorption capacity and recyclability of alginate-based TiO2 macrobead photocatalysts for water treatment. Journal of Environmental Chemical Engineering, 5(2), 1763–1770. DOI: 10.1016/j.jece.2017.03.017
  45. Wan, S., Zhao, W., Xiong, D., Li, S., Ye, Y., Du, L. (2022). Novel alginate immobilized TiO2 reusable functional hydrogel beads with high photocatalytic removal of dye pollutions. 42(10), 978–985. DOI: 10.1515/polyeng-2022-0017

Last update:

No citation recorded.

Last update:

No citation recorded.