skip to main content

Enzymatic Transesterification Using Different Immobilized Lipases and its Biodiesel Effect on Gas Emission

1School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah Alam Selangor, Malaysia

2Chemical Engineering Department, Faculty of Engineering, Universitas Negeri Semarang, Kampung Sekaran, Gunung Pati, Semarang, 50229, Indonesia

3Department of Biotechnology Engineering, International Islamic University Malaysia, Kuala Lumpur, Malaysia

Received: 5 Apr 2024; Revised: 28 May 2024; Accepted: 28 May 2024; Available online: 15 Jun 2024; Published: 30 Aug 2024.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2024 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Biodiesel, a third-generation bio-fuels, offering several advantages over regular diesel fuel. Waste cooking oil (WCO) emerges as an ideal feedstock due to its availability and easy accessibility. In this work, biodiesel is utilized from two different types of immobilized lipases: Rhizomucor miehei lipase (RMIM) and Candida antarctica lipase B (CALB). The impact of the molar ratio of oil to methyl acetate (1:3-1:12) was evaluated for both lipases, and the resultant biodiesel was tested in diesel engine. The enzymatic transesterification was carried out in ultrasonic assistance and the results showed that the greatest yield of 81.20% at 45℃, using CALB as a biocatalyst, 1.8% (w/v) lipase and oil to methyl acetate molar ratio of 1:12 within 3 hours. Triacetin, by-product was determined their concentration for each molar ratio and analyzed using FTIR range of 500cm-1 to 4000cm-1, revealing a significant absorption peak at 1238.90cm-1. Biodiesel was blended with commercial diesel fuel in varying quantities of 7, 10, and 20% by volume (B20). The results were compared to Industrial Diesel Fuel 7% (B7) and Commercial Diesel Fuel 10% (B10). NOx and CO2 emission drops as the percentage of diesel/biodiesel blends increases, supporting WCO as a cost-effective biodiesel feedstock with low petrol pollution.

Keywords: Biodiesel; Waste Cooking Oil; Transesterification; Lipases; Biodiesel Blends
Funding: Universiti Teknologi MARA under contract 600-RMC/GPK 5/3 (249/2020)

Article Metrics:

  1. Degfie, T.A., Mamo, T.T., Mekonnen, Y.S. (2019). Optimized Biodiesel Production from Waste Cooking Oil (WCO) using Calcium Oxide (CaO) Nano-catalyst. Scientific Reports, 9(1), 18982. DOI: 10.1038/s41598-019-55403-4
  2. Arumugam, A, Ponnusami, V. (2017). Production of biodiesel by enzymatic transesterification of waste sardine oil and evaluation of its engine performance. Heliyon, 3(12), e00486. DOI: 10.1016/j.heliyon.2017.e00486
  3. Suzihaque, M.U.H., Alwi, H., Kalthum Ibrahim, U., Abdullah, S., Haron, N. (2022). Biodiesel production from waste cooking oil: A brief review. Materials Today: Proceedings, 63, 490–495. DOI: 10.1016/j.matpr.2022.04.527
  4. Balat, M., Balat, H. (2010). Progress in biodiesel processing. Applied Energy, 87(6), 1815–1835. DOI: 10.1016/j.apenergy.2010.01.012
  5. Mandari, V., Devarai, S.K. (2022). Biodiesel Production Using Homogeneous, Heterogeneous, and Enzyme Catalysts via Transesterification and Esterification Reactions: a Critical Review. Bioenergy Research, 15(2), 935–961. DOI: 10.1007/s12155-021-10333-w
  6. Veny, H., Abdul Rani, M.A.A., Hanim Ab Hamid, F., Aziz, N., Sazali, R.A., Idris, S.S. (2022). Enzymatic transesterification of Rubber Seed Oil Using Immobilized Pseudomonas Cepacia Lipase. Journal of Physics: Conference Series, 2266, 012013. DOI: 10.1088/1742-6596/2266/1/012013
  7. Ycel, S., Terziolu, P., Zime, D. (2012). Lipase Applications in Biodiesel Production. In Biodiesel - Feedstocks, Production and Applications. DOI: 10.5772/52662
  8. Gharat, N., Rathod, V.K. (2013). Enzyme catalyzed transesterification of waste cooking oil with dimethyl carbonate. Journal of Molecular Catalysis B: Enzymatic, 88, 36–40. DOI: 10.1016/j.molcatb.2012.11.007
  9. Ognjanovic, N., Bezbradica, D., Knezevic-Jugovic, Z. (2009). Enzymatic conversion of sunflower oil to biodiesel in a solvent-free system: Process optimization and the immobilized system stability. Bioresource Technology, 100 (21), 5146–5154. DOI: 10.1016/j.biortech.2009.05.068
  10. Bournay, L., Casanave, D., Delfort, B., Hillion, G., Chodorge, J.A. (2005). New heterogeneous process for biodiesel production: A way to improve the quality and the value of the crude glycerin produced by biodiesel plants. Catalysis Today, 106 (1–4), 190–192. DOI: 10.1016/j.cattod.2005.07.181
  11. Erdiwansyah, E., Mamat, R., Sani, M.S.M., Sudhakar, K., Kadarohman, A., Sardjono, R.E. (2019). An overview of Higher alcohol and biodiesel as alternative fuels in engines. Energy Reports, 5, 467–479. DOI: 10.1016/j.egyr.2019.04.009
  12. Subhedar, P.B., Gogate, P.R. (2016). Ultrasound assisted intensification of biodiesel production using enzymatic interesterification. Ultrasonics Sonochemistry, 29, 67–75, DOI: 10.1016/j.ultsonch.2015.09.006
  13. Huang, Y., Yan, Y. (2008). Lipase-Catalyzed Biodiesel Production with Methyl Acetate as Acyl Acceptor. Zeitschrift für Naturforschung C, 63(3-4), 297-302. DOI: 10.1515/znc-2008-3-422
  14. Ali Baba. (2024). Citing Internet sources URL https://www.alibaba.com/product-detail/Organic-Solvent-High-Purity-Methanol-Liquid_1601040663814.html?spm=a2700.galleryofferlist.p_offer.d_title.6fba4a0byOkb89&s=p
  15. Ali Baba. (2024). Citing Internet sources URL https://www.alibaba.com/product-detail/_60677024472.html?spm=a2700.7724857.0.0.68837e7cVCAB0M
  16. Vasudevan P.T., Briggs, M. (2008). Biodiesel production - Current state of the art and challenges. Journal of Industrial Microbiology and Biotechnology, 35(5), 421–430. DOI: 10.1007/s10295-008-0312-2
  17. Maddikeri, G.L., Pandit, A.B., Gogate, P.R. (2013). Ultrasound assisted interesterification of waste cooking oil and methyl acetate for biodiesel and triacetin production. Fuel Processing Technology, 116, 241–249. DOI: 10.1016/j.fuproc.2013.07.004
  18. Surendhiran, D., Vijay, M. (2013). Interesterification of Marine Microalga Chlorella salina Oil with Immobilized Lipase as Biocatalyst Using Methyl Acetate as an Acyl Acceptor. International Journal of Environment and Bioenergy, 8(2), 68-85
  19. Du, W., Xu, Y., Liu, D., Zeng, J. (2004). Comparative study on lipase-catalyzed transformation of soybean oil for biodiesel production with different acyl acceptors. Journal of Molecular Catalysis B: Enzymatic, 30(3–4), 125–129. DOI: 10.1016/j.molcatb.2004.04.004
  20. Gusniah, A., Veny, H., Hamzah, F. (2019). Ultrasonic Assisted Enzymatic Transesterification for Biodiesel Production. Industrial and Engineering Chemistry Research, 58(2), 581–589. DOI: 10.1021/acs.iecr.8b03570
  21. Ramachandran, K., Suganya, T., Nagendra Gandhi, N., Renganathan, S. (2013). Recent developments for biodiesel production by ultrasonic assist transesterification using different heterogeneous catalyst: A review. Renewable and Sustainable Energy Reviews, 22, 410–418. DOI: 10.1016/j.rser.2013.01.057
  22. Adewale, P., Dumont, M.J., Ngadi, M. (2016). Enzyme-catalyzed synthesis and kinetics of ultrasonic assisted methanolysis of waste lard for biodiesel production. Chemical Engineering Journal, 284, 158–165. DOI: 10.1016/j.cej.2015.08.053
  23. Tupufia, S.C., Jeon, Y.J., Marquis, C., Adesina, A.A., Rogers, P.L. (2013). Enzymatic conversion of coconut oil for biodiesel production. Fuel Processing Technology, 106, 721–726. DOi: 10.1016/j.fuproc.2012.10.007
  24. Chozhavendhan, S., Singh, M.V.P., Fransila, B., Kumar, R.P., Devi, G.K. (2020). A review on influencing parameters of biodiesel production and purification processes. Current Research in Green and Sustainable Chemistry, 1, 1–6. DOI: 10.1016/j.crgsc.2020.04.002
  25. Norjannah, B., Ong, H.C., Masjuki, H.H., Juan, J.C., Chong, W.T. (2016). Enzymatic transesterification for biodiesel production: A comprehensive review. RSC Advances, 6(65), 60034–60055. DOI: 10.1039/c6ra08062f
  26. Jegannathan, K.R., Abang, S., Poncelet, D., Chan, E.S., Ravindra, P. (2008). Production of biodiesel using immobilized lipase - A critical review. Critical Reviews in Biotechnology, 28(4), 253–264. DOI: 10.1080/07388550802428392
  27. Mohamad, N.R., Marzuki, N.H.C., Buang, N.A., Huyop, F., Wahab, R.A. (2015). An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnology and Biotechnological Equipment, 29(2), 205–220. DOI: 10.1080/13102818.2015.1008192
  28. Seffernick, J.L., Samanta, S.K., Louie, T.M., Wackett, L.P., Subramanian, M. (2009). Investigative mining of sequence data for novel enzymes: A case study with nitrilases. Journal of Biotechnology, 143 (1), 17–26. DOI: 10.1016/j.jbiotec.2009.06.004
  29. Huang, Y., Yan, Y. (2008). Lipase-Catalyzed Biodiesel Production with Methyl Acetate as Acyl Acceptor. Zeitschrift für Naturforschung C, 63, 297–302. DOI: 10.1515/znc-2008-3-422
  30. Corrêa, I.N.D.S., De Souza, S.L., Catran, M., Bernardes, O.L., Portilho, M.F., Langone, M.A.P. (2011). Enzymatic biodiesel synthesis using a byproduct obtained from palm oil refining. Enzyme Research, 2011, 814507. DOI: 10.4061/2011/814507
  31. De Oliveira, D., Di Luccio, M., Faccio, C., Rosa, C.D., Bender, P., Lipke, N., Menoncin, S., Amroginski, C., de Oliveira, J.V. (2004). Optimization of enzymatic production of biodiesel from castor oil in organic solvent medium. Applied Biochemistry and Biotechnology, 115, 771-780. DOI: 10.1385/abab:115:1-3:0771
  32. Zhang, H., Liu, T., Zhu, Y., Hong, L., Li, T., Wang, X., Fu, Y. (2020). Lipases immobilized on the modified polyporous magnetic cellulose support as an efficient and recyclable catalyst for biodiesel production from Yellow horn seed oil. Renewable Energy, 145, 1246–1254. DOI: 10.1016/j.renene.2019.06.031
  33. Dhawan, M.S., Barton, S.C., Yadav, G.D. (2021). Interesterification of triglycerides with methyl acetate for the co-production biodiesel and triacetin using hydrotalcite as a heterogenous base catalyst. Catalysis Today, 375, 101–111. DOI: 10.1016/j.cattod.2020.07.056
  34. Pastres, R., Panzeri, A.L, Visentin, D., Causin, V. (2022). Determination by infrared spectroscopy of triacetin content in diesel: A tool for countering designer fuel frauds. Talanta Open, 5, 100109. DOI: 10.1016/j.talo.2022.100109
  35. Tan, K.T., Lee, K.T., Mohamed, A.R. (2011) Prospects of non-catalytic supercritical methyl acetate process in biodiesel production. Fuel Processing Technology, 92(10), 1905–1909, DOI: 10.1016/j.fuproc.2011.05.009
  36. Zainal, M. Z. A., Veny, H., Hamzah, F., Muhd Rodhi, M. N., Kumoro, A. C., Kusumaningtyas, R. D., Prasetiawan, H., Hartanto, D. (2023). Enzymatic Interesterification of Crude Palm Oil with Methyl acetate: Effect of Pre-treatment, Enzyme’s Dosage and Stability. Bulletin of Chemical Reaction Engineering & Catalysis. 18(2), 294–302. DOI: 10.9767/bcrec.17763
  37. Yunus, S., Rashid, A.A., Abdullah, N.R., Mamat, R., Latip, S.A. (2013). Emissions of transesterification Jatropha-Palm blended biodiesel. Procedia Engineering. 68, 265–270. DOI: 10.1016/j.proeng.2013.12.178
  38. Adaileh, W. M., Alqdah, K. S. (2012). Performance of diesel engine fuelled by a biodiesel extracted from a waste cocking oil. Energy Procedia. 18, 1317–1334. DOI: 10.1016/j.egypro.2012.05.149
  39. Ng, J.H., Ng, H.K., Gan, S. (2010). Advances in biodiesel fuel for application in compression ignition engines. Clean Technologies and Environmental Policy. 12(5), 459–493. DOI: 10.1007/s10098-009-0268-6
  40. Abed, K.A., El Morsi, A.K., Sayed, M.M., Shaib, A.A.E., Gad, M.S. (2018). Effect of waste cooking-oil biodiesel on performance and exhaust emissions of a diesel engine. Egyptian Journal of Petroleum. 27 (4), 985-989. DOI: 10.1016/j.ejpe.2018.02.008

Last update:

No citation recorded.

Last update:

No citation recorded.