skip to main content

Polyoxometalate Intercalated M2+/Al (M2+=Ni, Mg) Layered Double Hydroxide for Degradation of Methylene Blue

1Graduate School of Mathematics and Natural Sciences, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indonesia

2Research Center of Inorganic Materials and Coordination Complexes, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indonesia

3Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indonesia

Received: 28 Mar 2023; Revised: 14 May 2023; Accepted: 15 May 2023; Available online: 18 May 2023; Published: 30 Jul 2023.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2023 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

The synthesis and characterization of M2+/Al (M2+=Ni, Mg) layered double hydroxide (LDH) and intercalated polyoxometalate is presented. We have reported the growth of polyoxometalate on Ni/Mg layered double hydroxide for degradation methylene blue (MB). By considering variables such as pH of dye solution, dye concentration, and time as degradation variables, the efficiency of organic dye degradation and degradation parameters of M2+/Al (M2+ = Ni, Mg) LDH and both composite LDH-polyoxometalate has been identified. X-Ray Diffraction (XRD), Fourier Transform Infra Red (FTIR), Scanning Electron Microscope (SEM), and Ultra Violet Diffuse Reflectance Spectroscopy (UV-DRS) spectroscopy confirmed the layered double hydroxide structure. XRD and FTIR analysis confirmed the single-phase of the as-made and polyoxometalate intercalated LDH. SEM images show the formation of aggregates of small various sizes. The material’s photodegradation was assessed through methylene blue (MB) degradation process. The result showed that NiAl-Si has a good degradation capacity for MB as compared to NiAl-Pw, MgAl-Si, and MgAl-PW. The result shows that LDH composite presents stability and has good photocatalytic activities toward the reduction of methylene blue. The FTIR measurement confirming the LDH composite structure reveals the materials used in the fifth regeneration. The activity of MB photodegradation pristine were NiAl (45%), MgAl (43%), NiAl-Pw (78%), NiAl-Si (85%), MgAl-Pw (58%), and MgAl-Si (75%), respectively. The LDH-polyoxometalate composite material’s capacity to successfully photodegrade, as measured by the percentage of degradation, revealed an increase in photodegradation catalysis and the ability of the LDH to regenerate. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Keywords: LDH; LDH-polyoxometalate; photocatalyst; methylene blue
Funding: Universitas Sriwijaya

Article Metrics:

  1. Basaleh, A.A., Al-Malack, M.H., Saleh, T.A. (2019). Methylene Blue removal using polyamide-vermiculite nanocomposites: Kinetics, equilibrium and thermodynamic study. Journal of Environmental Chemical Engineering, 7(3), 103107. DOI: 10.1016/j.jece.2019.103107
  2. Salamat, S., Hadavifar, M., Rezaei, H. (2019). Preparation of nanochitosan-STP from shrimp shell and its application in removing of malachite green from aqueous solutions. Journal of Environmental Chemical Engineering, 7(5), 103328. DOI: 10.1016/j.jece.2019.103328
  3. Zhou, L., Xu, K., Cheng, X., Xu, Y., Jia, Q. (2017). Study on optimizing production scheduling for water-saving in textile dyeing industry. Journal of Cleaner Production, 141, 721–727. DOI: 10.1016/j.jclepro.2016.09.047
  4. Xu, M., Bi, B., Xu, B., Sun, Z., Xu, L. (2018). Polyoxometalate-intercalated ZnAlFe-layered double hydroxides for adsorbing removal and photocatalytic degradation of cationic dye. Applied Clay Science, 157, 86–91. DOI: 10.1016/j.clay.2018.02.023
  5. Zhang, T.T., Hu, Y.Y., Zhang, X., Cui, X.B. (2020). New compounds of polyoxometalates and cadmium mixed-organic-ligand complexes. Journal of Solid State Chemistry, 283, 121168. DOI: 10.1016/j.jssc.2019.121168
  6. Shi, Y., Huang, J., Zeng, G., Cheng, W., Hu, J. (2019). Photocatalytic membrane in water purification: is it stepping closer to be driven by visible light?. Journal of Membrane Science, 584, 364–392. DOI: 10.1016/j.memsci.2019.04.078
  7. Lu, K., Li, Q., Xi, X., Zhou, T., Zhao, X. (2020). Metal-Free Difluoromethylselenolation of Arylamines under Visible-Light Photocatalysis. Journal of Organic Chemistry, 85(2), 1224–1231. DOI: 10.1021/acs.joc.9b02535
  8. Khan, A.U., Khan, A.U., Li, B., Mahnashi, M.H., Alyami, B.A., Alqahtani, Y.S., Tahir, K., Khan, S., Nazir, S. (2020). A facile fabrication of silver/copper oxide nanocomposite: An innovative entry in photocatalytic and biomedical materials. Photodiagnosis and Photodynamic Therapy, 31, 101814. DOI: 10.1016/j.pdpdt.2020.101814
  9. Zhang, S., Yan, Y., Wang, W., Gu, X., Li, H., Li, J., Sun, J. (2018). Intercalation of phosphotungstic acid into layered double hydroxides by reconstruction method and its application in intumescent flame retardant poly (lactic acid) composites. Polymer Degradation and Stability, 147, 142–150. DOI: 10.1016/j.polymdegradstab.2017.12.004
  10. Ding, N., Zhang, L., Zhang, H., Shi, J., Wu, H., Luo, Y., Li, D., Meng, Q. (2017). Microwave-assisted synthesis of ZnIn2S4/g-C3N4 heterojunction photocatalysts for efficient visible light photocatalytic hydrogen evolution. Catalysis Communications, 100, 173–177. DOI: 10.1016/j.catcom.2017.06.050
  11. Yang, J., Jing, R., Wang, P., Liang, D.R., Huang, H., Xia, C., Zhang, Q., Liu, A., Meng, Z., Liu, Y. (2021). Black phosphorus nanosheets and ZnAl-LDH nanocomposite as environmental-friendly photocatalysts for the degradation of Methylene blue under visible light irradiation. Applied Clay Science, 200, 105902. DOI: 10.1016/j.clay.2020.105902
  12. Tabatabaeian, R., Dinari, M., Aliabadi, H.M. (2021). Cross-linked bionanocomposites of hydrolyzed guar gum/magnetic layered double hydroxide as an effective sorbent for methylene blue removal. Carbohydrate Polymers, 257, 117628. DOI: 10.1016/j.carbpol.2021.117628
  13. Guo, X., Fan, Z., Wang, Y., Jin, Z. (2021). CeO2 nanoparticles dispersed on CoAl-LDH hexagonal nanosheets as 0D/2D binary composite for enhanced photocatalytic hydrogen evolution. Surfaces and Interfaces, 24, 101105. DOI: 10.1016/j.surfin.2021.101105
  14. Malherbe, F., Besse, J.P. (2000). Investigating the effects of guest-host interactions on the properties of anion-exchanged Mg-Al hydrotalcites. Journal of Solid State Chemistry, 155(2), 332–341. DOI: 10.1006/jssc.2000.8922
  15. Yoshida, M., Koilraj, P., Qiu, X., Hirajima, T., Sasaki, K. (2015). Sorption of arsenate on MgAl and MgFe layered double hydroxides derived from calcined dolomite. Journal of Environmental Chemical Engineering, 3(3), 1614–1621. DOI: 10.1016/j.jece.2015.05.016
  16. Behbahani, E.S., Dashtian, K., Ghaedi, M. (2020). Fe/Co-chalcogenide-stabilized Fe3O4 nanoparticles supported MgAl-layered double hydroxide as a new magnetically separable sorbent for the simultaneous spectrophotometric determination of anionic dyes. Microchemical Journal, 152, 104431. DOI: 10.1016/j.microc.2019.104431
  17. Kaul, P.K., Samson, A.J., Selvan, G.T., Enoch, I.V.M.V., Selvakumar, P.M. (2017). Synergistic effect of LDH in the presence of organophosphate on thermal and flammable properties of an epoxy nanocomposite. Applied Clay Science, 135, 234–243. DOI: 10.1016/j.clay.2016.09.031
  18. Tonda, S., Jo, W.K. (2018). Plasmonic Ag nanoparticles decorated NiAl-layered double hydroxide/graphitic carbon nitride nanocomposites for efficient visible-light-driven photocatalytic removal of aqueous organic pollutants. Catalysis Today, 315, 213–222. DOI: 10.1016/j.cattod.2017.12.019
  19. Wang, R., Su, S., Ren, X., Guo, W. (2021). Polyoxometalate intercalated La-doped NiFe-LDH for efficient removal of tetracycline via peroxymonosulfate activation. Separation and Purification Technology, 274, 119113. DOI: 10.1016/j.seppur.2021.119113
  20. Sun, Y., Wang, X., Fu, Q., Pan, C. (2021). A novel hollow flower-like 0D/3D Zn0.5Cd0.5S/NiCoZn-LDH photocatalyst with n-n heterojunction for high hydrogen production. Applied Surface Science, 564, 150379. DOI: 10.1016/j.apsusc.2021.150379
  21. Starukh, H., Levytska, S. (2019). The simultaneous anionic and cationic dyes removal with Zn–Al layered double hydroxides. Applied Clay Science, 180, 105183. DOI: 10.1016/j.clay.2019.105183
  22. Yuliasari, N., Wijaya, A., Amri, Mohadi, R., Elfita, Lesbani, A. (2022). Application of M2+ (Magnesium, Zinc)/Alumina-Metal Oxide Composites as Photocatalysts for the Degradation of Cationic Dyes. Ecological Engineering and Environmental Technology, 23(4), 125–135. DOI: 10.12912/27197050/150374
  23. Gholami, P., Khataee, A., Soltani, R.D.C., Dinpazhoh, L., Bhatnagar, A. (2020). Photocatalytic degradation of gemifloxacin antibiotic using Zn-Co-LDH@biochar nanocomposite. Journal of Hazardous Materials, 382, 121070. DOI: 10.1016/j.jhazmat.2019.121070
  24. Astuti, Y., Arnelli, Pardoyo, Fauziyah, A., Nurhayati, S., Wulansari, A.D., Andianingrum, R., Widiyandari, H., Bhaduri, G.A. (2017). Studying impact of different precipitating agents on crystal structure, morphology, and photocatalytic activity of bismuth oxide. Bulletin of Chemical Reaction Engineering & Catalysis, 12(3), 478–484. DOI: 10.9767/bcrec.12.3.1144.478-484
  25. Astuti, Y., Andianingrum, R., Arnelli, A., Haris, A., Darmawan, A. (2020). The Role of H2C2O4 and Na2CO3 as Precipitating Agents on the Physichochemical Properties and Photocatalytic Activity of Bismuth Oxide. Open Chemistry, 18(1), 129–137. DOI: 10.1515/chem-2020-0013
  26. Amini, M., Khaksar, M., Ellern, A., Keith Woo, L. (2018). A new nanocluster polyoxomolybdate [Mo36O110(NO)4(H2O)14]·52H2O: Synthesis, characterization and application in oxidative degradation of common organic dyes. Chinese Journal of Chemical Engineering, 26(2), 337–342. DOI: 10.1016/j.cjche.2017.03.031
  27. Hanifah, Y., Mohadi, R., Mardiyanto, M., Lesbani, A. (2022). Photocatalytic Degradation of Malachite Green by NiAl-LDH Intercalated Polyoxometalate Compound. Bulletin of Chemical Reaction Engineering & Catalysis, 17(3), 627–637. DOI: 10.9767/bcrec.17.3.15418.627-637
  28. Hanifah, Y., Mohadi, R., Mardiyanto, Lesbani, A. (2023). Polyoxometalate Intercalated MgAl-Layered Double Hydroxide for Degradation of Malachite Green. Ecological Engineering and Environmental Technology, 24(2), 109–119. DOI: 10.12912/27197050/157093
  29. Wang, J., Lv, G., Wang, C. (2021). A highly efficient and robust hybrid structure of CoNiN@NiFe LDH for overall water splitting by accelerating hydrogen evolution kinetics on NiFe LDH. Applied Surface Science, 570, 151182. DOI: 10.1016/j.apsusc.2021.151182
  30. Hu, X., Zhu, X., Sun, Z. (2019). Efficient flame-retardant and smoke-suppression properties of MgAlCO3-LDHs on the intumescent fire retardant coating for steel structures. Progress in Organic Coatings, 135, 291–298. DOI: 10.1016/j.porgcoat.2019.06.014
  31. Mohapatra, L., Parida, K.M. (2012). Zn-Cr layered double hydroxide: Visible light responsive photocatalyst for photocatalytic degradation of organic pollutants. Separation and Purification Technology, 91, 73–80. DOI: 10.1016/j.seppur.2011.10.028
  32. Lesbani, A., Mohadi, R. (2014). Brönsted acid of Keggin type polyoxometalate catalyzed pinacol rearrangement. Bulletin of Chemical Reaction Engineering and Catalysis, 9(2), 136–141. DOI: 10.9767/bcrec.9.2.6074.136-141
  33. Hadnadjev-Kostic, M., Vulic, T., Marinkovic-Neducin, R. (2014). Solar light induced rhodamine B degradation assisted by TiO2-Zn-Al LDH based photocatalysts. Advanced Powder Technology, 25(5), 1624–1633. DOI: 10.1016/j.apt.2014.05.015
  34. Miao, Y. fang, Guo, R. tang, Gu, J. wen, Liu, Y. zhen, Wu, G. lin, Duan, C. peng, Zhang, X. dong, Pan, W. guo (2020). Fabrication of β-In2S3/NiAl-LDH heterojunction photocatalyst with enhanced separation of charge carriers for efficient CO2 photocatalytic reduction. Applied Surface Science, 527, 146792. DOI: 10.1016/j.apsusc.2020.146792
  35. Wang, J.A., Chen, L.F., Noreña, L.E. (2008). Al-MCM-41 and Pt/H3PW12O40/Al-MCM-41: structure characterization and catalytic properties. Studies in Surface Science and Catalysis, 174(B), 1259–1262. DOI: 10.1016/S0167-2991(08)80117-6
  36. Mirzaei, M., Eshtiagh-Hosseini, H., Hassanpoor, A. (2019). Different behavior of PDA as a preorganized ligand versus PCA ligand in constructing two inorganic-organic hybrid materials based on Keggin-type polyoxometalate. Inorganica Chimica Acta, 484, 332–337. DOI: 10.1016/j.ica.2018.09.053
  37. Zhao, M., Fang, Y., Ma, L., Zhu, X., Jiang, L., Li, M., Han, Q. (2020). Synthesis, characterization and in vitro antibacterial mechanism study of two Keggin-type polyoxometalates. Journal of Inorganic Biochemistry, 210, 111131. DOI: 10.1016/j.jinorgbio.2020.111131
  38. Astuti, Y., Elesta, P.P., Widodo, D.S., Widiyandari, H., Balgis, R. (2020). Hydrazine and urea fueled-solution combustion method for Bi2O3 synthesis: Characterization of physicochemical properties and photocatalytic activity. Bulletin of Chemical Reaction Engineering & Catalysis, 15(1), 104–111. DOI: 10.9767/bcrec.15.1.5483.104-111
  39. Timár, Z., Varga, G., Muráth, S., Kónya, Z., Kukovecz, Á., Havasi, V., Oszkó, A., Pálinkó, I., Sipos, P. (2017). Synthesis, characterization and photocatalytic activity of crystalline Mn(II) Cr(III)-layered double hydroxide. Catalysis Today, 284, 195–201. DOI: 10.1016/j.cattod.2016.12.037
  40. Ahmad, M., Ahmed, E., Ahmed, W., Elhissi, A., Hong, Z.L., Khalid, N.R. (2014). Enhancing visible light responsive photocatalytic activity by decorating Mn-doped ZnO nanoparticles on graphene. Ceramics International, 40, 10085–10097. DOI: 10.1016/j.ceramint.2014.03.184
  41. Parida, K.M., Baliarsingh, N., Patra, B.S., Das, J. (2007). Copperphthalocyanine immobilized Zn/Al LDH as photocatalyst under solar radiation for decolorization of methylene blue. Journal of Molecular Catalysis A: Chemical, 267(1–2), 202–208. DOI: 10.1016/j.molcata.2006.11.035
  42. Tabatabaeian, R., Dinari, M., Aliabadi, H.M. (2021). Cross-linked bionanocomposites of hydrolyzed guar gum/magnetic layered double hydroxide as an effective sorbent for methylene blue removal. Carbohydrate Polymers, 257, 117628. DOI: 10.1016/j.carbpol.2021.117628
  43. Gonçalves, R.G.L., Mendes, H.M., Bastos, S.L., D’Agostino, L.C., Tronto, J., Pulcinelli, S.H., Santilli, C.V., Neto, J.L. (2020). Fenton-like degradation of methylene blue using Mg/Fe and MnMg/Fe layered double hydroxides as reusable catalysts. Applied Clay Science, 187, 105477. DOI: 10.1016/j.clay.2020.105477
  44. Nayak, S., Parida, K.M. (2016). Nanostructured CeO2/MgAl-LDH composite for visible light induced water reduction reaction. International Journal of Hydrogen Energy, 41(46), 21166–21180. DOI: 10.1016/j.ijhydene.2016.08.062
  45. Li, Q., Kang, Z., Mao, B., Wang, E., Wang, C., Tian, C., Li, S. (2008). One-step polyoxometalate-assisted solvothermal synthesis of ZnO microspheres and their photoluminescence properties. Materials Letters, 62(16), 2531–2534. DOI: 10.1016/j.matlet.2007.12.041

Last update:

No citation recorded.

Last update:

No citation recorded.