skip to main content

Kinetics of In-Situ Catalytic Pyrolysis of Rice Husk Pellets Using a Multi-Component Kinetics Model

1Chemical Engineering Department, Universitas Sebelas Maret, Jl. Ir. Sutami 36A, Surakarta 57126, Indonesia

2Chemical Engineering Department, Universitas Gadjah Mada, Jl. Grafika 2, Yogyakarta 55284, Indonesia

Received: 23 Jan 2023; Revised: 22 Feb 2023; Accepted: 23 Feb 2023; Available online: 2 Mar 2023; Published: 30 Mar 2023.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2023 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Ash-based catalysts, as low-cost materials, are applicable in biomass pyrolysis and play a role in lowering the activation energy. This study enriched the insights of different method of catalyst addition into biomass in the catalytic pyrolysis. The addition of rice husk ash as a catalyst into rice husk pellets allows for better solid-solid contact between the biomass and the catalyst, since the common methods were only solid mixing. This research aimed to investigate the thermal characteristics and kinetics of the biomass components (hemicellulose, cellulose, lignin) in the in-situ catalytic pyrolysis of rice husk pellets with the addition of husk ash. The three-independent parallel reaction kinetics model was used to calculate the kinetics parameters based on thermogravimetric analysis conducted at 303-873 K with various heating rates (5, 10, 20 K/min) and ash addition ratios (10:0, 10:1, 10:2). The thermogram shows that the pyrolysis of rice husk pellets was divided into two stages. Stage 1, ranging from 510-650 K, represented the decomposition of hemicellulose and cellulose, occurring faster with high mass loss, while Stage 2, starting at around 650 K, represented lignin decomposition, occurring more slowly with low mass loss. The catalytic activity of the ash was only apparent at high temperatures, where cellulose and lignin decomposition were more dominant. Activation energy, as a representation of catalytic activity for each component, was not always lower in catalytic pyrolysis. However, the average activation energy decreased with increasing heating rates and ash addition ratios. The addition of the catalyst slowed the decomposition of hemicellulose but accelerated the decomposition of cellulose and lignin. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Keywords: In-Situ Catalytic Pyrolysis; Rice Husk Ash; Thermogravimetric Analysis; Independent Parallel Reaction; Activation Energy
Funding: Directorate General of Higher Education, Ministry of Research Technology and Higher Education, the Republic of Indonesia

Article Metrics:

  1. Wang, S-W, Li, D-X., Ruan, W-B., Jin, C-L., Farahani, M.R. (2018). A techno-economic review of biomass gasification for production of chemicals. Energy Sources, Part B: Economics, Planning, and Policy, 13(8), 351-356. DOI: 10.1016/j.egypro.2017.03.1111
  2. Muneer, B., Zeeshan, M., Qaisar, S., Razzaq, M., Iftikhar, H. (2019). Influence of in-situ and ex-situ HZSM-5 catalyst on co-pyrolysis of corn stalk and polystyrene with a focus on liquid yield and quality. Journal of Cleaner Production, 237, 117762. DOI: 10.1016/j.jclepro.2019.117762
  3. Loy, A.C.M., Gan, D.K.W., Yusup, S., Chin, B.L.F., Lam, M.K., Shahbaz, M., Unrean, P., Acda, M.N., Rianawati, E. (2018). Thermogravimetric kinetic modeling of in-situ catalytic pyrolytic conversion of rice husk to bioenergy using rice hull ash catalyst. Bioresource Technology, 261, 213-222. DOI: 10.1016/j.biortech.2018.04.020
  4. Chen, Z., Zhang, L. (2015). Catalyst and process parameters for the gasification of rice husk with pure CO2 to produce CO. Fuel Processing Technology, 133, 227-231. DOI: 10.1016/j.fuproc.2015.01.027
  5. Prabahar, R.S.S., Nagaraj, H., Jeyasubramanian, K. (2019). Enhanced recovery of H2 gas from rice husk and its char enabled with nano catalytic pyrolysis/gasification. Microchemical Journal, 146, 922-930. DOI: 10.1016/j.microc.2019.02.024
  6. Hidayat, A., Adnan, M.A., Sahid., A.C.M. (2020). Catalytic pyrolysis of Palm Empty Fruit Bunch over activated natural dolomite catalyst: Product distribution and product analysis. Material Science Forum, 991, 111-116. DOI: 10.4028/www.scientific.net/MSF.991.111
  7. Yuan, R., Yu, S., Shen, Y. (2019). Pyrolysis and combustion kinetics of lignocellulosic biomass pellets with calcium-rich wastes from agroforestry residues. Waste Management, 87, 86-96. DOI: 10.1016/j.wasman.2019.02.009
  8. Yuan, R., Shen, Y. (2019). Catalytic pyrolysis of biomass-plastic wastes in the presence of MgO and MgCO3 for hydrocarbon-rich oils production. Bioresources Technology, 293, 122076. DOI: 10.1016/j.biortech.2019.122076
  9. Pradana, Y.S., Daniyanto, Hartono, M., Prasakti, L., Budiman, A. (2019). Effect oc calcium and magnesium catalyst on pyrolysis kinetic of Indonesian sugarcane bagasse for biofuel production. Energy Procedia, 158, 431-439. DOI: 10.1016/j.egypro.2019.01.128
  10. Wibowo, W. A., Cahyono, R. B., Rochmadi, R., Budiman, A. (2022). Thermogravimetric Analysis and Kinetic Study on Catalytic Pyrolysis of Rice Husk Pellet using Its Ash as a Low-cost In-situ Catalyst. International Journal of Renewable Energy Development, 11(1), 207-219. DOI: 10.14710/ijred.2022.41887
  11. Rong, C., Li, B., Liu, W., Zhao, N. (2018). The effect of oyster shell powder & rice husk ash on the pyrolysis of rice husk for bio-oil. Energy Sources Part A: Recovery, Utilization, and Environmental Effects, 40(11), 1291-1304. DOI: 10.1080/15567036.2018.1469690
  12. Deshmukh, P., Bhatt, J., Peshwe, D., Pathak, S. (2012). Determination of Silica Activity Index and XRD, SEM and EDS Studies of Amorphous SiO2 Extracted from Rice Husk Ash. Transactions of the Indian Institute of Metals, 65(1), 63-70. DOI: 10.1007/s12666-011-0071-z
  13. Carrier, M., Auret, L., Bridgwater, A., Knoetze, J.H. (2016). Using Apparent Activation Energy as a Reactivity Criterion for Biomass Pyrolysis. Energy Fuels, 30, 7834 -7841. DOI: 10.1021/acs.energyfuels.6b00794
  14. Santos, K.G., Lira, T. S., Gianesella, M., Lobato, F.S., Murata, V.V., Barrozo, M.A.S. (2012). Bagasse Pyrolysis: A Comparative Study of Kinetic Models. Chemical Engineering Communications, 199(1), 109-121. DOI: 10.1080/00986445.2011.575906
  15. Ferreiro, A.I.M. (2015). Pyrolysis of Pine Bark, Wheat Straw and Rice Husk: Thermogravimetric Analysis and Kinetic Study. Thesis report. Mechanical Engineering – Tecnico Lisboa
  16. Garba, M.U., Charise, S.G., Bilyaminu, I., Alhassan, M., Musa, U., Isah, A.G. (2016). Kinetic Modeling of Rice Husk Components Pyrolysis Based on Independent Parallel Reactions. Nigeria Journal of Engineering and Applied Sciences, 3(1), 35-42. http://repository.futminna. edu.ng:8080/jspui/handle/123456789/9211
  17. Chen, W.H., Eng, C.F., Lin, Y.Y., Lin, Y.Y., Bach, Q.V. (2020). Independent parallel pyrolysis kinetics of cellulose, hemicelluloses and lignin at various heating rates analyzed by evolutionary computation. Energy Conversion and Management, 221, 113165. DOI: 10.1016/j.enconman.2020.113165
  18. Quiroga, E., Molto, J., Conesa, J.A., Valero, M.F., Cobo, M. (2020). Kinetics of the catalytic thermal degradation of Sugarcane residual biomass over Rh-Pt/CeO2-SiO2 for syngas production. Catalysts, 10, 508. DOI: 10.3390/catal10050508
  19. Park, W.C., Atreya, A., Baum, H.R. (2010). Experimental and theoretical investigation of heat and mass transfer processes during wood pyrolysis. Combustion and Flame, 157, 481-494. DOI: 10.1016/j.combustflame.2009.10.006
  20. Collard, F.X., Blin, J. (2014). A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renewable and Sustainable Energy Reviews, 38, 594-608. DOI: 10.1016/j.rser.2014.06.013
  21. Mohamed, B.A., Ellis, N., Kim, C.S., Bi, X. (2020). Synergistic Effects of Catalyst Mixtures on Biomass Catalytic Pyrolysis. Frontiers in Bioengineering and Biotechnology, 8, 615134. DOI: 10.3389/fbioe.2020.615134
  22. Shirazi, Y., Viamajala, S., Varanasi, S. (2020). In situ and Ex situ Catalytic Pyrolysis of Microalgae and Integration With Pyrolytic Fractionation. Frontiers in Chemistry, 8, 786. DOI: 10.3389/fchem.2020.00786
  23. Lu, Q., Zhang, T., Deng, X., He, R., Yuan, S., Li, J., Xie, X., Li, W., Liu, Z., Zhang, X. (2020). Enhancement of gas and aromatics by in-situ catalytic pyrolysis of biomass in the presence of silica gel. Biomass and Bioenergy, 138, 105567. DOI: 10.1016/j.biombioe.2020.105567
  24. Balasundram, V., Ibrahim, N., Kasmani, R.M., Abd. Hamid, M.K., Isha, R., Hasbullah, H., Ali, R.R. (2017). Thermogravimetric catalytic pyrolysis and kinetic studies of coconut copra and rice husk for possible maximum production of pyrolysis oil. Journal of Cleaner Production, 167, 218-228. DOI: 10.1016/j.jclepro.2017.08.173
  25. Zabeti, M., Nguyen, T.S., Lefferts, L., Heeres, H.J., Seshan, K. (2012). In situ catalytic pyrolysis of lignocellulose using alkali-modified amorphous silica alumina. Bioresource Technology, 118, 374-381. DOI: 10.1016/j.biortech.2012.05.034
  26. Jeon, M.J., Kim, S.S., Jeon, J.K., Park, S.H., Kim, J.M., Sohn, J.M., Lee, S.H., Park, Y.K. (2012). Catalytic pyrolysis of waste rice husk over mesoporous materials. Nanoscale Research Letters, 7(18), 1-5. http://www.nanoscalereslett. com/ content/7/1/18
  27. Diez, D., Uruena, A., Pinero, R., Barrio, A., Tamminen, T. (2020). Determination of Hemicellulose, Cellulose, and Lignin Content in Different Types of Biomasses by Thermogravimetric Analysis and Pseudocomponent Kinetic Model (TGA-PKM Method). Processes, 8, 1048. DOI: 10.3390/pr8091048
  28. Storn, R., Price, K. (1997). Differential Evolution – A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. Journal of Global Optimization, 11, 341–359. DOI: 10.1023/a:1008202821328
  29. Sheth, P.N., Babu, B.V. (2009). Differential Evolution Approach for Obtaining Kinetic Parameters in Nonisothermal Pyrolysis of Biomass. Material and Manufacturing Processes, 24, 47-52. DOI: 10.1080/10426910802540661
  30. Dragoi, E.N., Curteanu, S. (2016). The use of differential evolution algorithm for solving chemical engineering problems. Reviews in Chemical Engineering, 32(2), 149-180. DOI: 10.1515/revce-2015-0042
  31. Ahmad, M.F., Isa, N.A.M., Lim, W.H., Ang, K.M. (2022). Differential evolution: A recent review based on state-of-the-art works. Alexandria Engineering Journal, 61, 3831-3872. DOI: 10.1016/j.aej.2021.09.013
  32. Wang, M. (2014). Optimization Rastrigin Function by Differential Evolution algorithm. Version 1.0.0.0. ( https://www.mathworks.com/matlabcentral/fileexchange/46818-optimization-rastrigin-function-by-differential-evolution-algorithm), MATLAB Central File Exchange. Retrieved March 05, 2021
  33. Paulsen, A.D., Mettler, M.S., Dauenhauer, P.J. (2013). The role of sample dimension and temperature in cellulose pyrolysis. Energy Fuels, 27(4), 2126–2134. DOI: 10.1021/ef302117j
  34. Rasool, T., Srivastava, V.C., Khan, M.N.S. (2018). Kinetic and thermodynamic analysis of thermal decomposition of Deodar (Cedrus Deodara) saw dust and rice husk as potential feedstock for pyrolysis. International Journal of Chemical Reactor Engineering, 17(1), 20170184. DOI: 10.1515/ijcre-2017-0184
  35. Abaide, E.R., Tres, M.V., Zabot, G.L., Mazutti, M.A. (2019). Reasons for processing of rice coproducts: Reality and expectations. Biomass and Bioenergy, 120, 240-256. DOI: 10.1016/j.biombioe.2018.11.032
  36. Jiang, L., Hu, S., Wang, Y., Su, S., Sun, L., Xu, B., He, L., Xiang, J. (2015). Catalytic effects of inherent alkali and alkaline earth metallic species on steam gasification of biomass. International Journal of Hydrogen Energy, 40, 15460-15469. DOI: 10.1016/j.ijhydene.2015.08.111
  37. Wang, Z., Xiong, Y. (2020). Simultaneous improvement in qualities of bio-oil and syngas from catalytic pyrolysis of rice husk by demineralization. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 42, 1-14. DOI: 10.1080/15567036.2020.1824038
  38. Pradana Y.S., Hidayat, A., Prasetya, A., Budiman, A. (2018). Application of coconut-shell activated carbon as heterogeneous solid catalyst for biodiesel synthesis. Defect and Diffusion Forum, 382, 280-285. DOI: 10.4028/www.scientific.net/DDF.382.280
  39. Shen, Y., Zhao, P., Shao, Q., Ma, D., Takahashi, F., Yoshikawa, K. (2014). In-situ catalytic conversion of tar using rice husk char-supported nickel-iron catalysts for biomass pyrolysis/gasification. Applied Catalysis B: Environmental, 152-153, 140-151. DOI: 10.1016/j.apcatb.2014.01.032
  40. Loy, A.C.M., Yusup, S., Chin, B.L.F., Gan, D.K.W., Shahbaz, M., Acda, M.N., Unrean, P., Rianawati, E. (2018). Comparative study of in-situ catalytic pyrolysis of rice husk for syngas production: Kinetics modelling and product gas analysis. Journal of Cleaner Production, 197, 1231-1243. DOI: 10.1016/j.jclepro.2018.06.245
  41. Yang, H., Yan, R., Chen, H., Lee, D.H., Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86, 1781-1788. DOI: 10.1016/j.fuel.2006.12.013
  42. Lim, J.S., Manan, Z.A., Wan Alwi, S.R., Hashim, H. (2012). A review on utilisation of biomass from rice industry as a source of renewable energy. Renewable and Sustainable Energy Reviews, 16, 3084-3094. DOI: 10.1016/j.rser.2012.02.051
  43. Widiyannita, A.M., Pradana, Y.S., Cahyono, R.B., Sutijan, Akiyama, T., Budiman, A. (2020). Kinetic Study of Pyrolysis of Ulin Wood Residue using Thermogravimetric Analysis. International Journal on Advanced Science, Engineering and Information Technology, 10(4), 1624-1630; http://insightsociety.org/ojaseit/index.php/ ijaseit/ article/view/3640
  44. Zhang, X., de Jong, W., Preto, F. (2009). Estimating kinetic parameters in TGA using B-spline smoothing and the Friedman method. Biomass and Bioenergy, 33, 1435-1441. DOI: 10.1016/j.biombioe.2009.06.009
  45. Mishra, R.K., Mohanty, K. (2018). Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis. Bioresource Technology, 251, 63-74. DOI: 10.1016/j.biortech.2017.12.029
  46. Orfao, J.J.M., Antunes, F.J.A., Figueiredo, J.L. (1999). Pyrolysis kinetics of lignocellulosic materials - three independent reactions model. Fuel, 78, 349-358. DOI: 10.1016/S0016-2361(98)00156-2
  47. Sunarno, Rochmadi, Mulyono, P., Aziz, M., Budiman, A. (2017). Kinetic Study of Catalytic Cracking of Bio-oil over Silica-alumina Catalyst. BioResources, 13(1), 1917-1929. DOI: 10.15376/biores.13.1.1917-1929
  48. Jamilatun, S., Budhijanto, Rochmadi, Yuliestyan, A., Hadiyanto, Budiman, A. (2019). Comparative Analysis Between Pyrolysis Products of Spirulina platensis Biomass and Its Residues. International Journal of Renewable Energy Development, 8(2), 133-140. DOI: 10.14710/ijred.8.2.133-140
  49. Soleimanikutanaei, S., Ghasemisahebi, E., Lin, C.X. (2018). Numerical study of heat transfer enhancement using transverse microchannels in a heat sink. International Journal of Thermal Sciences, 125, 89-100. DOI: 10.1016/j.ijthermalsci.2017.11.009
  50. Nguyen, H.T., Gallardo, S.M., Bacani, F., Hinode, H., Minh Do, Q., Promentilla, M.A. (2015). Evaluating thermal properties of geopolymer produced from Red Mud, Rice Husk Ash and Diatomaceous Earth. ASEAN Engineering Journal Part B, 4(1), 51-65. DOI: 10.11113/aej.v4.15427
  51. Sotelo, C.D.R. (2018). Heat and mass transfer limitations in the pyrolysis of wood particles. Thesis report. Chemical Engineering – School of Engineering Sciences in Chemistry, Biotechnology and Health, Sweden
  52. Jamilatun, S., Budhijanto, Rochmadi, Budiman, A. (2017). Noncatalytic Slow Pyrolysis of Sprulina Plantesis Residue for Production of Liquid Biofuel. International Journal of Renewable Energy Development, 7(4), 1901-1908. DOI: 10.20508/ijrer.v7i4.6305.g7233
  53. Fu, Y., Zhang, N., Shen, Y., Ge, X., Chen, M. (2018). Micro-mesoporous carbons from original and pelletized rice husk via one-step catalytic pyrolysis. Bioresource Technology, 269, 67-73. DOI: 10.1016/j.biortech.2018.08.083
  54. Uddin, M.J., Khan, M.M.R., Iftekhar, M.S., Islam, M.A. (2006). Cr(VI) removal from wastewater by using rice husk ash (RHA). ASEAN Journal of Chemical Engineering, 6(1), 53-57. DOI: 10.22146/AJCHE.50154
  55. Ahmaruzzaman, M., Gupta, V.K. (2011). Rice husk and its ash as low-cost adsorbents in water and wastewater treatment. Industrial & Engineering Chemistry Research, 50, 13589-13613. DOI: 10.1021/ie201477c
  56. El-Said, A.G., Badawy, N.A., Garamon, S.E. (2018). Adsorption of Heavy Metal Ions from Aqueous Solutions onto Rice Husk Ash Low Cost Adsorbent. Journal of Environmental & Analytical Toxicology, 8(1), 1000543. DOI: 10.4172/2161-0525.1000543

Last update:

No citation recorded.

Last update:

No citation recorded.