1Chemical Engineering Department, Universitas Sebelas Maret, Jl. Ir. Sutami 36A, Surakarta 57126, Indonesia
2Chemical Engineering Department, Universitas Gadjah Mada, Jl. Grafika 2, Yogyakarta 55284, Indonesia
BibTex Citation Data :
@article{BCREC17226, author = {Wusana Agung Wibowo and Rochim Bakti Cahyono and Rochmadi Rochmadi and Arief Budiman}, title = {Kinetics of In-Situ Catalytic Pyrolysis of Rice Husk Pellets Using a Multi-Component Kinetics Model}, journal = {Bulletin of Chemical Reaction Engineering & Catalysis}, volume = {18}, number = {1}, year = {2023}, keywords = {In-Situ Catalytic Pyrolysis; Rice Husk Ash; Thermogravimetric Analysis; Independent Parallel Reaction; Activation Energy}, abstract = { Ash-based catalysts, as low-cost materials, are applicable in biomass pyrolysis and play a role in lowering the activation energy. This study enriched the insights of different method of catalyst addition into biomass in the catalytic pyrolysis. The addition of rice husk ash as a catalyst into rice husk pellets allows for better solid-solid contact between the biomass and the catalyst, since the common methods were only solid mixing. This research aimed to investigate the thermal characteristics and kinetics of the biomass components (hemicellulose, cellulose, lignin) in the in-situ catalytic pyrolysis of rice husk pellets with the addition of husk ash. The three-independent parallel reaction kinetics model was used to calculate the kinetics parameters based on thermogravimetric analysis conducted at 303-873 K with various heating rates (5, 10, 20 K/min) and ash addition ratios (10:0, 10:1, 10:2). The thermogram shows that the pyrolysis of rice husk pellets was divided into two stages. Stage 1, ranging from 510-650 K, represented the decomposition of hemicellulose and cellulose, occurring faster with high mass loss, while Stage 2, starting at around 650 K, represented lignin decomposition, occurring more slowly with low mass loss. The catalytic activity of the ash was only apparent at high temperatures, where cellulose and lignin decomposition were more dominant. Activation energy, as a representation of catalytic activity for each component, was not always lower in catalytic pyrolysis. However, the average activation energy decreased with increasing heating rates and ash addition ratios. The addition of the catalyst slowed the decomposition of hemicellulose but accelerated the decomposition of cellulose and lignin. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License ( https://creativecommons.org/licenses/by-sa/4.0 ). }, issn = {1978-2993}, pages = {85--102} doi = {10.9767/bcrec.17226}, url = {https://journal.bcrec.id/index.php/bcrec/article/view/17226} }
Refworks Citation Data :
Ash-based catalysts, as low-cost materials, are applicable in biomass pyrolysis and play a role in lowering the activation energy. This study enriched the insights of different method of catalyst addition into biomass in the catalytic pyrolysis. The addition of rice husk ash as a catalyst into rice husk pellets allows for better solid-solid contact between the biomass and the catalyst, since the common methods were only solid mixing. This research aimed to investigate the thermal characteristics and kinetics of the biomass components (hemicellulose, cellulose, lignin) in the in-situ catalytic pyrolysis of rice husk pellets with the addition of husk ash. The three-independent parallel reaction kinetics model was used to calculate the kinetics parameters based on thermogravimetric analysis conducted at 303-873 K with various heating rates (5, 10, 20 K/min) and ash addition ratios (10:0, 10:1, 10:2). The thermogram shows that the pyrolysis of rice husk pellets was divided into two stages. Stage 1, ranging from 510-650 K, represented the decomposition of hemicellulose and cellulose, occurring faster with high mass loss, while Stage 2, starting at around 650 K, represented lignin decomposition, occurring more slowly with low mass loss. The catalytic activity of the ash was only apparent at high temperatures, where cellulose and lignin decomposition were more dominant. Activation energy, as a representation of catalytic activity for each component, was not always lower in catalytic pyrolysis. However, the average activation energy decreased with increasing heating rates and ash addition ratios. The addition of the catalyst slowed the decomposition of hemicellulose but accelerated the decomposition of cellulose and lignin. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Article Metrics:
Last update:
In order for Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group to publish and disseminate research articles, we need non-exclusive publishing rights (transfered from author(s) to publisher). This is determined by a publishing agreement between the Author(s) and Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group. This agreement deals with the transfer or license of the copyright of publishing to Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group, while Authors still retain significant rights to use and share their own published articles. Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group supports the need for authors to share, disseminate and maximize the impact of their research and these rights, in any databases.
As a journal Author, you have rights for a large range of uses of your article, including use by your employing institute or company. These Author rights can be exercised without the need to obtain specific permission. Authors publishing in BCREC journals have wide rights to use their works for teaching and scholarly purposes without needing to seek permission, including:
Authors/Readers/Third Parties can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (the name of the creator and attribution parties (authors detail information), a copyright notice, an open access license notice, a disclaimer notice, and a link to the material), provide a link to the license, and indicate if changes were made (Publisher indicates the modification of the material (if any) and retain an indication of previous modifications using a CrossMark Policy and information about Erratum-Corrigendum notification).
Authors/Readers/Third Parties can read, print and download, redistribute or republish the article (e.g. display in a repository), translate the article, download for text and data mining purposes, reuse portions or extracts from the article in other works, sell or re-use for commercial purposes, remix, transform, or build upon the material, they must distribute their contributions under the same license as the original Creative Commons Attribution-ShareAlike (CC BY-SA).
The Authors submitting a manuscript do so on the understanding that if accepted for publication, non-exclusive right for publishing (publishing right) of the article shall be assigned/transferred to Publisher of Bulletin of Chemical Reaction Engineering & Catalysis journal (Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group).
Upon acceptance of an article, authors will be asked to complete a 'Copyright Transfer Agreement for Publishing (CTAP)'. An e-mail will be sent to the Corresponding Author confirming receipt of the manuscript together with a 'Copyright Transfer Agreement for Publishing' form by online version of this agreement.
Bulletin of Chemical Reaction Engineering & Catalysis journal and Masyarakat Katalis Indonesia-Indonesian Catalyst Society (MKICS), the Editors and the Advisory International Editorial Board make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in the Bulletin of Chemical Reaction Engineering & Catalysis are sole and exclusive responsibility of their respective authors and advertisers.
Remember, even though we ask for a transfer of copyright for publishing (CTAP), our journal Author(s) retain (or are granted back) significant scholarly rights as mentioned before.
The Copyright Transfer Agreement for Publishing (CTAP) Form can be downloaded here: [Copyright Transfer Agreement for Publishing (CTAP) Form BCREC 2024]
The copyright form should be signed electronically and send to the Editorial Office in the form of original e-mail below: Prof. Dr. I. Istadi (Editor-in-Chief)Editorial Office of Bulletin of Chemical Reaction Engineering & CatalysisLaboratory of Plasma-Catalysis (R3.5), UPT Laboratorium Terpadu, Universitas DiponegoroJl. Prof. Soedarto, Semarang, Central Java, Indonesia 50275Telp/Whatsapp: +62-81-316426342E-mail: bcrec[at]live.undip.ac.id
(This policy statements has been updated at 24th January 2024)