skip to main content

Effect of Additional Polyethylene Glycol and Citric Acid on Characteristics of NiMo/g-Al2O3 Catalyst in Light Cycle Gas Oil Hydrodesulfurisation

1Department of Chemistry, Faculty of Science and Technology, UIN Syarif Hidayatullah Jakarta, Jl. Ir. H. Juanda No. 95 Ciputat Tangerang Selatan 15412, Indonesia

2Catalyst and Materials, Research and Technology Innovation (RTI), Direktorat SPPU, PT Pertamina (Persero), Jalan Raya Bekasi Km 20, Pulogadung, Jakarta, Indonesia

3Integrated Laboratory Centre, Faculty of Science and Technology, UIN Syarif Hidayatullah Jakarta, Jl. Ir. H. Juanda No. 95, Ciputat, Tangerang Selatan 15412, Indonesia

Received: 4 Jan 2023; Revised: 16 Apr 2023; Accepted: 17 Apr 2023; Available online: 18 Apr 2023; Published: 30 Apr 2023.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2023 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Sulfur is an impurity in diesel that causes low product quality and environmental pollution. Therefore, a catalyst is needed in the profound hydrodesulfurization (HDS) reaction to produce diesel fuel with low sulfur content. The catalyst synthesized in this work was NiMo/g-Al2O3 with the addition of PEG (2%, 4%, 6%) (w/w) and CA (1%, 2%, and 4%) (w/w). The catalyst was synthesized using the dry impregnation method with a metal concentration of 3% NiO and 15% MoO3. The obtained catalysts were characterized using X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), and Surface Area Analyzer (SAA). This work acquired the best catalyst characteristics for the HDS process by adding 2% PEG and 1% CA with a concentration of 3.19% NiO and 13.98% MoO3. The surface area, pore volume, and diameter are 181.655 m2/g, 0.50 cm3/g, and 110.51 Å, respectively. The catalyst activity satisfies Euro V standards at 345 ℃ with a sulfur content of 9.55 ppm, and the sulfur conversion (HDS) is 98.75%. The density and cetane index of the obtained diesel fuel was 0.798 g/mL and 53.6, respectively. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Keywords: PEG; Polyethylene Glycol; Citric Acid; Hydrodesulfurization; NiMo/g-Al2O3; Light Cycle Gas Oil
Funding: PT. Pertamina (Persero)

Article Metrics:

  1. Pertamina. (2018). Spesifikasi Bahan Bakar. Jakarta: Pertamina
  2. Yunita, R.D., Kiswandono, A.A. (2017). Kajian indeks standar pencemar udara (ISPU) sulfur dioksida (SO2) sebagai polutan udara pada tiga lokasi di kota Bandar Lampung. Analit: Analytical and Environmental Chemistry, 2(1), 1–11
  3. Mukono. (2011). Aspek Kesehatan Pencemaran Udara, Cet.1. Surabaya: Airlangga University Press
  4. Mangalik, Y. (2019). Pengaruh Penggunaan Bahan Bakar Solar dan Pertamina Dex Terhadap Gas Buang Pada Mesin Diesel Ford Escord 1.8. Undergraduate Thesis, Universitas Hasanuddin
  5. Jeevanandam, P., Klabunde, K.J., Tetzler, S.H. (2005). Adsorption of thiophenes out of hydrocarbons using metal impregnated nanocrystalline aluminum oxide. Microporous and Mesoporous Materials, 79(13), 101–110. 2005, doi: 10.1016/j.micromeso.2004.10.029
  6. Sano, Y., Sugahara, K., HoiI, K., Korai, Y., Mochida, I. (2005). Two-step adsorption process for deep desulfurization of diesel oil. Fuel, 84(7-8), 903–910. doi: 10.1016/j.fuel.2004.11.019
  7. Lussia, A. (2009). Desulfurisasi minyak solar dengan menggunakan adsorben zeolit alam. Journals of Indonesia Zeolites, 8(1), 1-5
  8. Lestrari, H.D., Subagjo, S., Makertihartha, I. (2006). Sintesis katalis NiMo untuk hydrotreating coker nafta. Jurnal Teknik Kimia Indonesia, 5(1), 365–373. doi: 10.5614/jtki.2006.5.1.5
  9. Shafi, R., Hutchings, G.J. (2000). Hydrodesulfurization of hindered dibenzothiophenes: an overview. Catalysis Today, 59(3-4), 423–442. doi: 10.1016/S0920-5861(00)00308-4
  10. Ozkan, U.S., Ni, S., Zhang, L., Moctezuma, E. (1994). Simultaneous hydrodesulfurization and hydrodenitrogenation of model compounds over Ni-Mo/g-Al2O3 Catalysts. Energy & Fuels, 8(1), 249–257. doi: 10.1021/ef00043a039
  11. Martínez, M.T., Benito, A.M., Callejas, M.A., Trasobares, S. (1998). Kinetics of sulfur removal from a liquid coal residue in thermal, hydrothermal, and hydrocatalytic cracking. Energy & Fuels, 12(2), 365–370. doi: 10.1021/ef970138b
  12. Absi-Halabi, M. (1998). Performance comparison of alumina-supported Ni-Mo, Ni-W and Ni-Mo-W catalysts in hydrotreating vacuum residue. Fuel, 77(7), 787–790. doi: 10.1016/S0016-2361(97)00228-7
  13. Steiner. (2002). Kinetic and Deactivation Studies of Hydrodesulfurization Catalysts. The Norwegian University of Science and Technology
  14. Shyamal, K., Maity, S.K., Turaga, U.T. (2004). Search for an efficient 4,6-DMDBT hydrodesulfurization catalyst: a review of recent studies. Energy & Fuels, 18(5), 1227–1237. doi: 10.1021/ef030179+
  15. Topsøe, H., Hinnemann, B., Nørskov, J.K., Lauritsen, J.V., Besenbacher, F., Hansen, P.L., Hytoft, G., Egeberg, R.G., Knudsen, K.G. (2005). The role of reaction pathways and support interactions in the development of high activity hydrotreating catalysts. Catalysis Today, 107–108(12–22). doi: 10.1016/j.cattod.2005.07.165
  16. Kamalia, F. (2018). Sintesis Katalis NiMo/γ-Al2O3, CoMo/γ-Al2O3, dan CoNiMo/γ-Al2O3 untuk Hidrodesulfurisasi Kerosin. Undergraduate Thesis, UIN Syarif Hidayatullah Jakarta
  17. Li, H., Chu, H., Ma, X., Wang, G., Liu, F., Guo, M., Lu, W., Zhou, S., Yu, M. (2021). Efficient heterogeneous acid synthesis and stability enhancement of UiO-66 impregnated with ammonium sulfate for biodiesel production. Chemical Engineering Journal, 408(127–277). doi: 10.1016/j.cej.2020.127277
  18. Satterfield, C.N., Heterogeneous Catalysis in Industrial Practice, 2nd Edition. New York., 1991
  19. González-Cortés, S.L., Qian, Y., Almegren, H.A., Xiao, T., Kuznetsov, V.L., Edwards, P.P. (2015). Citric acid-assisted synthesis of γ-alumina-supported high loading CoMo sulfide catalysts for the hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) reactions. Appl. Petrochem. Res., 5(3), 181–197. doi: 10.1007/s13203-015-0097-y
  20. Iwamoto, R., Kagami, N., Sakoda, Y., Iino, A. (2005). Effect of polyethylene glycol addition on NiO-MoO3/Al2O3 and NiO-MoO3-P2O5/Al2O3 Hydrodesulfurization Catalyst. Journal of the Japan Petroleum Institute, 48(6), 351–357. doi: 10.1627/jpi.48.351
  21. Behnejad, B., Abdouss, M., Tavasoli, A. (2019). Comparison of performance of Ni–Mo/γ-alumina catalyst in HDS and HDN reactions of main distillate fractions. Pet. Sci., 16(3), 645–656. doi: 10.1007/s12182-019-0319-5
  22. Zhang, M., Fan, J., Chi, K., Duan, A., Zhao, Z., Meng, X., Zhang, H. (2017). Synthesis, characterization, and catalytic performance of NiMo catalysts supported on different crystal alumina materials in the hydrodesulfurization of diesel. Fuel Processing Technology, 156(2017), 446–453, doi: 10.1016/j.fuproc.2016.10.007
  23. Simatupang, M. Asri, L., Purwasasmita, B.S. (2015). Pengaruh penambahan kitosan dan asam sitrat terhadap pembentukan LiMn2O4 spinel menggunakan metode sol gel. Jurnal Teknologi Bahan dan Barang Teknik, 5(61-62). doi: 10.37209/jtbbt.v5i2.60
  24. Rinaldi, N., Subagjo, Makertiharta, I., Haerudin, H. (2008). Preparasi katalis nafta hidrotreating dengan fasa aktif Ni-Mo pada penyangga lempung berpilar. Jurnal Teknik Kimia Indonesia, 7(2), 761–773. doi: 10.5614/jtki.2008.7.2.1
  25. Zhao, R., Zeng, L., Liang, J., Liu, C. (2016). Interaction between Ni promoter and Al2O3 support and its effect on the performance of NiMo/g-Al2O3 catalyst in hydrodesulphurization. Journal of Fuel Chemistry and Technology, 44(5), 564–569. doi: 10.1016/S1872-5813(16)30026-3
  26. Pertamina. (2015). Katalis - Dasar Teori & Metoda Uji. Jakarta: Pertamina
  27. ASTM D5453. (2019). Standard Test Method for Determination of Total Sulfur in Light Hydrocarbons, Spark Ignition Engine Fuel, Diesel Engine Fuel, and Engine Oil by Ultraviolet Fluorescence
  28. ASTM D4052. (2019). Standard Test Method for Density, Relative Density, and API Gravity of Liquids by Digital Density Meter
  29. ASTM D86. (2019). Standard Test Method for Distillation of Petroleum Products and Liquid Fuels at Atmospheric Pressure
  30. Rosmelina, L. (2012). Preparasi dan Karakterisasi Katalis Nanopartikel NiMo/Al2O3 dengan Metode Simple Heating untuk Sintesis Renewable Diesel,. Jakarta, FT UI
  31. Sari, N., Kahraman, E., Sari, B., Özgün, A. (2006). Synthesis of Some polymer−metal complexes and elucidation of their structures. Journal of Macromolecular Science, Part A, 43(8), 1227–1235. doi: 10.1080/10601320600737484
  32. Wang, X., Chen, X., Gao, L., Zheng, H., Ji, M., Shen, T., Zhang, Z. (2003). Citric acid-assisted sol–gel synthesis of nanocrystalline LiMn2O4 spinel as cathode material. J. Cryst. Growth, 256 (1–2), 123–127. doi: 10.1016/S0022-0248(03)01289-2
  33. Francis, A.J., Dodge, C.J., Gillow, J.B. (1992). Biodegradation of metal citrate complexes and implications for toxic-metal mobility. Nature, 356(6365), 140–142. doi: 10.1038/356140a0
  34. Li, Q., Chai, L., Wang, Q., Yang, Z., Yan, H., Wang, Y. (2010). Fast esterification of spent grain for enhanced heavy metal ions adsorption. Bioresour. Technol., 101(10), 3796–3799. doi: 10.1016/j.biortech.2010.01.003
  35. Francis, A.J., Dodge, C.J., Gillow, J.B. (1992). Biodegradation of metal citrate complexes and implications for toxic metal mobility. Nature, 356, 140-142. doi: 10.1038/356140a0
  36. Nugrahaningtyas, K.D., Trisunaryanti, W., Maruto, D., Yusnani, A. (2009). Preparation and characterization the non-sulfided metal catalyst: Ni/USY and NiMo/USY. Indo. J. Chem., 9 (2), 177–183. doi: 10.22146/ijc.21526
  37. Xiaodong.Yi, Guo, D., Li, P., Lian, X., Xu, Y., Dong, Y., Lai, W., Fang, W. (2017). One Pot Synthesis of NiMo-Al2O3 Catalysts by Solvent Free Solid State Method for Hydrodesulfurization. RSC Advances, 7, 54468–54474. doi: 10.1039/C7RA11892A
  38. Mohanty, S. (2011). Effect of Citric acid on Hydrotreating Activity of NiMo Catalysts, Master Thesis. University of Saskatchewan
  39. Ismangil, Hasanudin, E. (2005). Degradasi mineral batuan oleh asam-asam organik. Jurnal Ilmu Tanah dan Lingkungan, 5(1), 1–17
  40. Okamoto, Y., Arima, Y., Nakai, K., Umeno, S., Katada, N., Yoshida, H., Tanaka, T., Yamada, M., Akai, Y., Segawa, K., Nishijima, A., Matsumoto, H., Niwa, M., Uchijima, T. (1998). A study on the preparation of supported metal oxide catalysts using JRC-reference catalysts. I. Preparation of a molybdena–alumina catalyst. Part 1. Surface area of alumina. Appl. Catal. A Gen., 170(2), 315–328. doi: 10.1016/S0926-860X(98)00064-7
  41. Ulfah, M., Subagjo, S. (2012). Pengaruh perbedaan sifat penyangga alumina terhadap sifat katalis hydrotreating berbasis nikel-molibdenum. Reaktor, 14 (2), 151-157, doi: 10.14710/reaktor.14.2.151-157
  42. Debecker, D.P., Schimmoeller, B., Stoyanova, M., Poleunis, C., Bertrand, P., Rodemerck, U., Gaigneaux, U.M. (2011). Flame-made MoO3/SiO2–Al2O3 metathesis catalysts with highly dispersed and highly active molybdate species. J. Catal., 277(2), 154–163. doi: 10.1016/j.jcat.2010.11.003
  43. Rianto, L.B., Amalia, S., Khalifah, S.N. (2012). Pengaruh impregnasi logam titanium pada zeolit alam malang terhadap luas permukaan zeolit. Alchemy Journal of Chemistry, 2(1), 58-67, doi: 10.18860/al.v0i0.2295
  44. Efiyanti, L., Santi, D. (2016). Pengaruh Katalis NiO dan NiMoO terhadap perengkahan minyak cangkang biji jambu mete. Jurnal Penelitian Hasil Hutan, 34(3), 189-197, doi: 10.20886/jphh.2016.34.3
  45. Kusworo, T.D., Yusufina, D., Atyaforsa. (2013). Pengaruh katalis Co dan Fe terhadap karakteristik carbon nanotubes dari gas asetilena dengan menggunakan proses catalytic chemical vapour deposition (CCVD). Reaktor, 14(3), 234–241. doi: 10.14710/reaktor.14.3.234-241
  46. Tee, J.C., Aziz, M., Ismail, A.F., Rusop, M., Soga, T. (2009). Effect of reaction temperature and flow rate of precursor on formation of multi-walled carbon nanotubes. in AIP Conference Proceedings, 214–218. doi: 10.1063/1.3160133
  47. Rahma, A. (2019). Sintesis dan Karakterisasi Katalis NiMo/g-Al2O3 dengan Penambahan Zeolit HY, Zeolit Hirarki dan Silika, Undergraduate Thesis, UIN Syarif Hidayatullah Jakarta
  48. Abid, M.F., Ahmed, S.M., Abu, H.W.H., Ali, S.M. (2019). Study on novel scheme for hydrodesulfurization of middle distillates using different types of catalyst, Journal of King Saud University - Engineering Sciences, 31(2), 144–151. doi: 10.1016/j.jksues.2017.11.006
  49. Nugrahaningtyas, K.D. Pratiwi, N., Heraldy, E. (2018). Desulfurisasi katalitik tiofen menggunakan katalis CoMo/USY dalam reaktor batch. ALCHEMY Jurnal Penelitian Kimia, 14(1), 119–130. doi: 10.20961/alchemy.14.1.2368.119-130
  50. Jing, G. (2011). Effects of Biodiesel Blending on Exhaust Emissions. PhD Thesis. University of Kansas
  51. Knothe, G., Matheaus, A.C., Ryan, T.W. (2003). Cetane numbers of branched and straight-chain fatty esters determined in an ignition quality tester. Fuel, 82(8), 971–975. doi: 10.1016/S0016-2361(02)00382-4
  52. Niemantsverdriet, J. W. (2007). Spectroscopy in Catalysis: An Introduction, 2nd Edition. Germany. Wiley-VCH

Last update:

No citation recorded.

Last update:

No citation recorded.