skip to main content

Photodegradation of Methylene Blue with Aid of Green Synthesis of CuO/TiO2 Nanoparticles from Extract of Citrus Aurantium Juice

Chemical Engineering Department, University of Technology, Baghdad, Iraq

Received: 11 Nov 2022; Revised: 30 Dec 2022; Accepted: 31 Dec 2022; Available online: 13 Jan 2023; Published: 30 Mar 2023.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2023 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Green synthesis methods using plants have many advantages such as time-saving, chemical-free, and negative effects on the environment. So, extracted Citrus aurantium juice was used to synthesize green CuO/TiO2 and(G- CuO/TiO2) nanocatalyst which was characterized by XRD, SEM, EDX, FTIR, BET, and ZP and utilized in the degradation of methylene blue (MB) under UV lamps and dark environments. The ANOVA program was used to maximize the photodegradation efficiency (%) of (G-CuO/TiO2) on the MB dye. The four independent variables: Initial dye concentration (10-50 mg/L), pH (3-9), adsorbent dose (200-1000 mg/L), and contact time (30-90 min) served to the model of the photodegradation efficiency (%). The ANOVA results confirmed the high significance of the regression model while the predicted values of the photodegradation efficiency (%) of MB were in good agreement with the corresponding experimental ones. Optimized conditions for the maximum photodegradation efficiency (98.6%) by (G- CuO/TiO2) NPs were the initial dye concentration (10.93 mg/L), pH (8.87), adsorbent mass (986.43 mg/L), and contact time (89.08 min). The validity of the quadratic model was examined, and found in good agreement with the experimental values. Results demonstrated that (G-CuO/TiO2) could be a promising photocatalyst in the degradation of MB dye. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Keywords: Photocatalytic Degradation; Nanoparticle Cuo-TiO2; Citrus aurantium juice; Methylene Blue
Funding: University of Technology, Baghdad, Iraq

Article Metrics:

  1. Al-Dahri, T., Abdulrazak, A.A., Rohani, S. (2022). Preparation and characterization of Linde-type A zeolite (LTA) from coal fly ash by microwave assisted synthesis method: Its application as adsorbent for removal of anionic dyes. International Journal of Coal Preparation and Utilization, 42, 2064–2077. DOI: 10.1080/19392699.2020.1792456
  2. Ahmed, F.S., Abdulrazak, A.A., Alsaffar, M.A. (2022). Modelling and optimization of methylene blue adsorption from wastewater utilizing magnetic marble dust adsorbent: A response surface methodology approach. Materials Today: Proceedings, 60, 1676–1688. DOI: 10.1016/j.matpr.2021.12.224
  3. Ahmad, M., Rehman, W., Khan, M.M., Qureshi, M.T., Gul, A., Haq, S., Ullah, R., Rab, A., Menaa, F. (2021). Phytogenic fabrication of ZnO and gold decorated ZnO nanoparticles for photocatalytic degradation of Rhodamine B. Journal of Environmental Chemical Engineering, 9, 104725. DOI: 10.1016/j.jece.2020.104725
  4. Abdulrazak, A.A., Shakor, Z.M., Rohani, S. (2018). Optimizing Biebrich Scarlet removal from water by magnetic zeolite 13X utilizing response surface method. Journal of Environmental Chemical Engineering, 6, 6175–6183. DOI: 10.1016/j.jece.2018.09.043
  5. Bassim, S., Mageed, A.K., AbdulRazak, A.A., Majdi, H.S. (2022). Green Synthesis of Fe3O4 Nanoparticles and Its Applications in Wastewater Treatment. Inorganics, 10(12), 260. DOI: 10.3390/inorganics10120260
  6. Ahmed, F.S., Alsaffar, M.A., AbdulRazak, A.A. (2022). One-step synthesis of magnetic fly ash composites for methylene blue removal: batch and column study. Environmental Science and Pollution Research, in press. DOI: 10.1007/s11356-022-23491-x
  7. Majid, Z., Abdulrazak, A.A., Noori, W.A.H. (2019). Modification of zeolite by magnetic nanoparticles for organic dye removal. Arabian Journal for Science and Engineering, 44, 5457–5474. DOI: 10.1007/s13369-019-03788-9
  8. Santoso, E., Ediati, R., Kusumawati, Y., Bahruji, H., Sulistiono, D.O., Prasetyoko, D. (2020). Review on recent advances of carbon-based adsorbent for methylene blue removal from waste water. Materials Today Chemistry, 16, 100233. DOI: 10.1016/j.mtchem.2019.100233
  9. Dzinun, H., Ichikawa, Y., Honda, M., Zhang, Q. (2020). Efficient Immobilised TiO2 in Polyvinylidene fluoride (PVDF) Membrane for Photocatalytic Degradation of Methylene Blue. Journal of Membrane Science and Research, 6, 188–195. DOI: 10.22079/JMSR.2019.106656.1263
  10. Al-Dhabi, N.A., Arasu, M.V. (2018). Environmentally-friendly green approach for the production of zinc oxide nanoparticles and their anti-fungal, ovicidal. and larvicidal properties. Nanomaterials, 8(7), 500. DOI: 10.3390/nano8070500
  11. Ali, S., Khan, S.A., Khan, I., Yamani, Z.H., Sohail, M., Morsy, M.A. (2017). Surfactant-free synthesis of ellipsoidal and spherical shaped TiO2 nanoparticles and their comparative photocatalytic studies. Journal of Environmental Chemical Engineering, 5, 3956–3962. DOI: 10.1016/j.jece.2017.07.066
  12. Mohammed, H.A., Khaleefa, S.A., Basheer, M.I. (2021). Photolysis of Methylene Blue Dye Using an Advanced Oxidation Process (Ultraviolet Light and Hydrogen Peroxide). Journal of Engineering and Sustainable Development, 25(1), 59–67. DOI: 10.31272/jeasd.25.1.5
  13. Wang, S.J., Sun, H.P., Qiao, P.Z., Li, Z.Z., Xie, Y., Zhou, W. (2021). NiS/Pt Nanoparticles Co-Decorated Black Mesoporous TiO2 Hollow Nanotube Assemblies as Efficient Hydrogen Evolution Photocatalysts. Applied Materials Today, 22, 100977. DOI: 10.1016/j.apmt.2021.100977
  14. De Pasquale, I., Lo Porto, C., Dell’Edera, M., Petronella, F., Agostiano, A., Curri, M.L., Comparelli, R. (2020). Photocatalytic TiO2-Based Nanostructured Materials for Microbial Inactivation. Catalysts, 10, 1382. DOI: 10.3390/catal10121382
  15. Gandhi, P.R., Jayaseelan, C., Kamaraj, C., Rajasree, S.R., Mary, R.R. (2018). In vitro antimalarial activity of synthesized TiO2 nanoparticles using Momordica charantia leaf extract against Plasmodium falciparum. Journal of Applied Biomedicine, 16(4), 378-386. DOI: 10.1016/j.jab.2018.04.001
  16. Goutam, S.P., Saxena, G., Singh, V., Yadav, A.K., Bharagava, R.N., Thapa, K.B. (2018). Green synthesis of TiO2 nanoparticles using leaf extract of Jatropha curcas L. for photocatalytic degradation of tannery wastewater. Chemical Engineering Journal, 336, 386-396. DOI: 10.1016/j.cej.2017.12.029
  17. Jegadeeswaran, P., Rajiv, P., Vanathi, P., Rajeshwari, S., Venckatesh, R. (2016). A novel green technology: synthesis and characterization of Ag/TiO2 nanocomposites using Padina tetrastromatica (seaweed) extract. Materials Letters, 166, 137-139. DOI: 10.1016/j.matlet.2015.12.058
  18. Xu, T., Li, C., Li, H., Bai, J., Qin, H., Sun, W., Huang, Y. (2014). Synthesis and Characterization of Cu Nanoparticles Embedded in PAN/β-Cyclodextrin (β-CD) Composite Nanofiber Films. Particulate Science and Technology, 32(3), 306-310. DOI: 10.1080/02726351.2013.856976
  19. Raorane, D.V., Chavan, P.S., Pednekar, S.R., Chaughule, R.S. (2017). Green and Rapid Synthesis of Copper-Doped TiO2 Nanoparticles with Increased Photocatalytic Activity. Advances in Chemical Science, 6, 13–20. DOI: 10.14355/sepacs.2017.06.002
  20. Haider, A., Ali, G., Haider, M.J., Edan, M.S., Al-Obaidy, R., Thamir, A., Hathal, M.M., Abbas, E.M., Al-Sheikh, F. (2022). Modification optical properties of TiO2 nanostructure as solar cell. Energy Reports, 8, 77-85. DOI: 10.1016/j.egyr.2022.06.097
  21. Azzaz, A.A., Assadi, A.A., Jellali, S., Bouzaza, A., Wolbert, D., Rtimi, S., Bousselmi, L. (2018). Discoloration of simulated textile effluent in continuous photoreactor using immobilized titanium dioxide: Effect of zinc and sodium chloride. Journal of Photochemistry and Photobiology A: Chemistry, 358, 111–120. DOI: 10.1016/j.jphotochem.2018.01.032
  22. Daneshvar, N., Rasoulifard, M.H., Khataee, A.R., Hosseinzadeh, F. (2007). Removal of C.I. Acid Orange 7 from aqueous solution by UV irradiation in the presence of ZnO nanopowder. Journal of Hazardous Materials, 143, 95–101. DOI: 10.1016/j.jhazmat.2006.08.072
  23. Zhang, X., Wang, G., Liu, X., Wu, J., Li, M., Gu, J., Li, H., Fang, B. (2008). Different CuO nanostructures: synthesis, characterization, and applications for glucose sensors. The Journal of Physical Chemistry C, 112(43), 16845–16849. DOI: 10.1021/jp806985k
  24. Wang, G., Huang, J., Chen, S., Gao, Y., Cao, D. (2011). Preparation and supercapacitance of CuO nanosheet arrays grown on nickel foam. Journal of Power Sources, 196, 5756–5760. DOI: 10.1016/j.jpowsour.2011.02.049
  25. Munir, S., Shah, S.M., Hussain, H. (2016). Effect of carrier concentration on the optical band gap of TiO2 nanoparticles. Materials & Design, 92, 64-72. DOI: 10.1016/j.matdes.2015.12.022
  26. Daffalla, S.B., Mukhtar, H. Shaharun, M.S. (2010). Characterization of adsorbent developed from rice husk: effect of surface functional group on phenol adsorption. Journal of Applied Sciences, 10(12), 1060-1067. DOI: 10.3923/jas.2010.1060.1067
  27. Khan, A.Q., Yuan, S., Niu, S., Liu, F., Feng, G., Jiang, M., Zeng, H. (2018). Photocatalytic dye degradation with copper–titanium dioxide nanocomposites under sunlight and visible light irradiation, Materials Research Express, 5(1), 015030. DOI: 10.1088/2053-1591/aaa361
  28. Wu, C.Y., Tu, K.J., Deng, J.P., Lo, Y.S., Wu, C.H. (2017). Markedly Enhanced Surface Hydroxyl Groups of TiO₂ Nanoparticles with Superior Water-Dispersibility for Photocatalysis. Materials, 10(5), 566. DOI: 10.3390/ma10050566
  29. Tasbihi, M., Kočí, K., Troppová, I., Edelmannová, M., Reli, M., Čapek, L., Schomäcker, R. (2018). Photocatalytic reduction of carbon dioxide over Cu/TiO2 photocatalysts. Environmental Science and Pollution Research, 25, 34903–34911. DOI: 10.1007/s11356-017-0944-8
  30. Rahman, M.M., Jamal, A., Khan, S.B., Faisal, M. (2011). Highly sensitive ethanol chemical sensor based on Ni-doped SnO2 nanostructure materials. Biosensors and Bioelectronics, 28(1), 127-134. DOI: 10.1016/j.bios.2011.07.024
  31. Marimuthu, S., Rahuman, A.A., Jayaseelan, C., Kirthi, A.V., Santhoshkumar, T., Velayutham, K., Bagavan, A., Kamaraj, C., Elango, G., Iyappan, M., Siva, C., Karthik, L., Rao, K.V.B. (2013). Acaricidal activity of synthesized titanium dioxide nanoparticles using Calotropis gigantea against Rhipicephalus microplus and Haemaphysalis bispinosa. Asian Pacific Journal of Tropical Medicine, 6(9), 682-688. DOI: 10.1016/S1995-7645(13)60118-2
  32. Santhoshkumar, T., Rahuman, A.A., Jayaseelan, C., Rajakumar, G., Marimuthu, S., Kirthi, A.V., Thomas, J., Venkatesan, J., Kim, S.K. (2014). Green synthesis of titanium dioxide nanoparticles using Psidium guajava extract and its antibacterial and antioxidant properties. Asian Pacific Journal of Tropical Medicine, 7(12), 968-976. DOI: 10.1016/S1995-7645(14)60171-1
  33. Borhade, A.V., Tope, D.R., Uphade, B.K. (2012). An Efficient Photocatalytic Degradation of Methyl Blue Dye by Using Synthesised PbO Nanoparticles. Journal of Chemistry, 9, 362680. DOI: 10.1155/2012/362680
  34. Pourahmad, A. (2015). Fabrication of nanocatalyst in aqueous solution with photocatalytic activity of methylene blue. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 45(7), 1080-1086. DOI: 10.1080/15533174.2013.862656
  35. Al-Jemeli, M., Mahmoud, M.A., Majdi, H.S., Abid, M.F., Abdullah, H.M., AbdulRazak, A.A. (2021). Degradation of Anti- Inflammatory Drugs in Synthetic Wastewater by Solar Photocatalysis. Catalysts, 11, 1330. DOI: 10.3390/catal11111330
  36. Isai, K.A., Shrivastava, V.S. (2019). Photocatalytic degradation of methylene blue using ZnO and 2%Fe–ZnO semiconductor nanomaterials synthesized by sol–gel method: A comparative study. SN Applied Sciences, 1, 1247. DOI: 10.1007/s42452-019-1279-5
  37. Sahoo, C., Gupta, A.K., Sasidharan Pillai, I.M. (2012). Photocatalytic degradation of methylene blue dye from aqueous solution using silver ion-doped TiO2 and its application to the degradation of real textile wastewater. Journal of Environmental Science and Health, Part A, 47(10), 1428-1438. DOI: 10.1080/10934529.2012.672387
  38. Saeed, K., Khan, I., Park, S.Y. (2015). TiO2/amidoxime‐modified polyacrylonitrile nanofibers and its application for the photodegradation of methyl blue in aqueous medium. Desalination and Water Treatment, 54, 3146–3151. DOI: 10.1080/19443994.2014.912157
  39. Atarod, M., Nasrollahzadeh, M., Sajadi, S.M. (2016). Euphorbia heterophylla leaf extract mediated green synthesis of Ag/TiO2 nanocomposite and investigation of its excellent catalytic activity for reduction of variety of dyes in water. Journal of Colloid and Interface Science, 462, 272–279. DOI: 10.1016/j.jcis.2015.09.073
  40. Abdellah, M.H., Nosier, S.A., El-Shazly, A.H., Mubarak, A.A. (2018). Photocatalytic decolorization of methylene blue using TiO2/UV system enhanced by air sparging. Alexandria Engineering Journal, 57(4), 3727-3735. DOI: 10.1016/j.aej.2018.07.018
  41. Begum, S., Devi, T.B., Ahmaruzzaman, M. (2016). L-lysine monohydrate mediated facile and environment friendly synthesis of SnO2 nanoparticles and their prospective applications as a catalyst for the reduction and photodegradation of aromatic compounds. Journal of Environmental Chemical Engineering, 4, 2976-2989. DOI: 10.1016/j.jece.2016.05.024
  42. Davar, F., Majedi, A., Mirzaei, A. (2015). Green synthesis of ZnO nanoparticles and its application in the degradation of some dyes. Journal of the American Ceramic Society, 98(6), 1739–1746. DOI: 10.1111/jace.13467
  43. Vinayagam, R., Selvaraj, R., Arivalagan, P., Varadavenkatesan, T. (2020). Synthesis, characterization and photocatalytic dye degradation capability of Calliandra haematocephala-mediated zinc oxide nanoflowers. Journal of Photochemistry and Photobiology B: Biology, 203, 111760. DOI: 10.1016/j.jphotobiol.2019.111760
  44. Prasad, A.R., Garvasis, J., Oruvil, S.K., Joseph, A. (2019). Bio-inspired green synthesis of zinc oxide nanoparticles using Abelmoschus esculentus mucilage and selective degradation of cationic dye pollutants. Journal of Physics and Chemistry of Solids, 127, 265–274. DOI: 10.1016/j.jpcs.2019.01.003
  45. Siripireddy, B., Mandal, B.K. (2017). Facile green synthesis of zinc oxide nanoparticles by Eucalyptus globulus and their photocatalytic and antioxidant activity. Advanced Powder Technology, 28, 785–797. DOI: 10.1016/j.apt.2016.11.026
  46. Rana, N., Chand, S., Gathania, A.K. (2016). Green synthesis of zinc oxide nano-sized spherical particles using Terminalia chebula fruits extract for their photocatalytic applications. International Nano Letters, 6, 91–98. DOI: 10.1007/s40089-015-0171-6
  47. Mahdavi, K., Zinatloo-Ajabshir, S., Yousif, Q.A., Salavati-Niasari, M. (2022). Enhanced photocatalytic degradation of toxic contaminants using Dy2O3-SiO2 ceramic nanostructured materials fabricated by a new, simple and rapid sonochemical approach. Ultrasonics Sonochemistry, 82, 105892. DOI: 10.1016/j.ultsonch.2021.105892

Last update:

No citation recorded.

Last update:

No citation recorded.