skip to main content

Reducing Energy Consumption in the Formaldehyde Production Process

Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, Tembalang, Kota Semarang, 50275, Indonesia

Received: 19 Dec 2024; Revised: 23 Dec 2024; Accepted: 30 Dec 2024; Available online: 9 Jan 2025; Published: 30 Jun 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Formaldehyde is a substance that has been utilized for a long time due to its numerous benefits. This research article focuses on optimizing energy consumption in formaldehyde production from methanol using metal oxide catalysts. The Formox process is one of the main methods for formaldehyde production through the partial oxidation of methanol with metal oxide catalysts. In this process, energy released by the system is recovered and reused, making the overall energy consumption more efficient and reducing the required costs. By reducing the energy consumed in the production process, emissions released into the atmosphere will decrease, and profitability can be enhanced by lowering energy-related costs. The energy results before modification show a value of 43,030,653.8 kJ/h, while the modified system yields 26,766,429.7 kJ/h, achieving an energy efficiency improvement of 37.8%. Copyright © 2025 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Formaldehyde; Formox; Metal Oxide; Process Modification; Energy Efficiency

Article Metrics:

  1. Dovrou, E., Bates, K.H., Moch, J.M., Mickley, L.J., Jacob, D.J., & Keutsch, F.N. (2022). Catalytic role of formaldehyde in particulate matter formation. Proceedings of the National Academy of Sciences, 119 (6), e2113265119. DOI: 10.1073/pnas.2113265119
  2. Liu, Y., Kirchberger, F.M., Müller, S., Eder, M., Tonigold, M., Sanchez-Sanchez, M., & Lercher, J.A. (2019). Critical role of formaldehyde during methanol conversion to hydrocarbons. Nature communications, 10(1), 1462. DOI: 10.1038/s41467-019-09449-7
  3. Bahmanpour, A.M., Hoadley, A., & Tanksale, A. (2014). Critical review and exergy analysis of formaldehyde production processes. Reviews in Chemical Engineering, 30 (6), 583-604. DOI: 10.1515/revce-2014-0022
  4. Ferreira, J.R., Rezende, L.C., Barbosa, A.D.S., De Carvalho, P., De Lima, N.E., & Carvalho, A.A. (2017). Economic, human and environmental health benefits of replacing formaldehyde in the preservation of corpses. Ecotoxicology and Environmental Safety, 145, 490-495. DOI: 10.1016/j.ecoenv.2017.07.072
  5. Thrane, J., Mentzel, U.V., Thorhauge, M., Høj, M., & Jensen, A.D. (2021). A review and experimental revisit of alternative catalysts for selective oxidation of methanol to formaldehyde. Catalysts, 11(11), 1329. DOI: 10.3390/catal11111329
  6. Chowdhury, A.G., Arnold, U., Garbev, K., Bender, M., & Sauer, J. (2024). Direct dehydrogenation of methanol to formaldehyde over ZnO–SiO2-based catalysts. Catalysis Science & Technology, 14(17), 4958-4967. DOI: 10.1039/D4CY00541D
  7. Trincado, M., Grützmacher, H., & Prechtl, M.H. (2018). CO2-based hydrogen storage–Hydrogen generation from formaldehyde/water. Physical Sciences Reviews, 3(5), 20170013. DOI: 10.1515/psr-2017-0013
  8. Mursics, J., Urbancl, D., & Goricanec, D. (2020). Process of formaldehyde and volatile organic compounds’ removal from waste gases. Applied Sciences, 10 (14), 4702. DOI: 10.3390/app10144702
  9. Münzer, P., Arnold, U., & Sauer, J. (2024). Process Design for the Directly Coupled Production of Methanol and Formaldehyde Based on CO2. Chemie Ingenieur Technik. DOI: 10.1002/cite.202300183
  10. Shakeel, K., Javaid, M., Muazzam, Y., Naqvi, S.R., Taqvi, S.A.A., Uddin, F., Mehran, M.T., Sikander, U., & Niazi, M.B. (2020). Performance comparison of industrially produces formaldehyde using two different catalysts. Processses, 8 (5), 571. DOI: 10.3390/pr8050571
  11. Deng, J., Pan, T., Xu, Q., Chen, M. Y., Zhang, Y., Guo, Q. X., & Fu, Y. (2014). Linked strategy for the production of fuels via formose reaction. Scientific Reports, 3 (1), 1244. DOI: 10.1038/srep01244
  12. Tavares Lima, M., Salifou, N.O., Brigagão, G.V., Itabaiana Jr, I., & Wojcieszak, R. (2023). Conversion of CO2 into Glycolic Acid: A Review of Main Steps and Future Challenges. Catalysts, 14(1), 4. DOI: 10.3390/catal14010004
  13. Dalena, F., Senatore, A., Basile, M., Knani, S., Basile, A., & Iulianelli, A. (2018). Advances in methanol production and utilization, with particular emphasis toward hydrogen generation via membrane reactor technology. Membranes, 8 (4), 98. DOI: 10.3390/membranes8040098
  14. Han, Z., Qi, Y., Yang, Z., Han, H., Jiang, Y., Du, W., ... & Wang, F. (2020). Recent advances and perspectives on constructing metal oxide semiconductor gas sensing materials for efficient formaldehyde detection. Journal of Materials Chemistry C, 8 (38), 13169-13188. DOI: 10.1039/D0TC03750H
  15. Braz, C.G., Lutters, N., Rocha, J., Alvim, R., Kenig, E.Y., & Matos, H.A. (2020). Modeling and simulation of an industrial formaldehyde absorption system. Industrial & Engineering Chemistry Research, 59 (13), 5996-6006. DOI: 10.1021/acs.iecr.9b07013
  16. Lindner, B.J. (2019). Evaluation of polyoxymethylene dimethyl ether synthesis based on dual fluidized bed steam gasification. Doctoral Dissertation, Technische Universität Wien
  17. Sun, S., Li, H., & Xu, Z.J. (2018). Impact of surface area in evaluation of catalyst activity. Joule, 2(6), 1024-1027. DOI: 10.1016/j.joule.2018.05.003
  18. Ghahraloud, H., & Farsi, M. (2017). Modeling and optimization of methanol oxidation over metal oxide catalyst in an industrial fixed bed reactor. Journal of the Taiwan Institute of Chemical Engineers, 81, 95-103. DOI: 10.1016/j.jtice.2017.10.003
  19. O’Rielly, K., & Jeswiet, J. (2015). Improving industrial energy efficiency through the implementation of waste heat recovery systems. Transactions of the Canadian Society for Mechanical Engineering, 39(1), 125-136. DOI: 10.1139/tcsme-2015-0010
  20. Lighfoot, E.N., & Sinnott, R.K. (1994). Coulson and Richardson's Chemical Engineering Vol. 6: Chemical Engineering Design. Chemical Engineering Science-Paper Edition, 49(12), 2032

Last update:

No citation recorded.

Last update:

No citation recorded.